Advertisement

Catalysis Letters

, Volume 148, Issue 9, pp 2856–2868 | Cite as

Vanillin Hydrodeoxygenation: Kinetic Modelling and Solvent Effect

  • Alexandrina Sulman
  • Päivi Mäki-Arvela
  • Louis Bomont
  • Vyacheslav Fedorov
  • Moldir Alda-Onggar
  • Annika Smeds
  • Jarl Hemming
  • Vincenzo Russo
  • Johan Wärnå
  • Mats Käldström
  • Dmitry Yu. MurzinEmail author
Article

Abstract

Vanillin hydrodeoxygenation was investigated using Pt/C catalyst in the temperature and total pressure ranges of 80–200 °C and 20–30 bar in several solvents, such as tetrahydrofuran, 2-propanol, water and in solventless conditions using 1:1 mass ratio of vanillin to guaiacol. The results revealed that the rate increased with increasing solvent polarity as follows: tetrahydrofuran < 2-propanol < water. The main product was p-creosol with 66% selectivity at complete vanillin conversion in HDO under 30 bar total pressure at 100 °C after 4 h using water as a solvent. In a solventless experiment with 1:1 mass ratio of vanillin–guaiacol as a feedstock only vanillin was transformed to p-creosol with 91% conversion in 4 h at 200 °C under 30 bar total pressure, while guaiacol did not produce any HDO products. Both thermodynamic analysis and kinetic modelling were performed. Vanillin hydrodeoxygenation resulted in formation of p-creosol over Pt/C catalyst using an optimum vanillin initial concentration in water solution. From the industrial point of view vanillin hydrodeoxygenation proceeded rapidly giving high yields of p-creosol in solventless hydrodeoxygenation of vanillin-guaiacol mixture, while guaiacol was not deoxygenated.

Graphical Abstract

Keywords

Hydrodeoxygenation Vanillin Kinetic modelling 

Abbreviations

List of Symbols

K

Rate constant

K0j

Equilibrium constant at standard conditions for reaction j

Keq

Adsorption equilibrium constant

N

Moles (mol)

P

Pressure (bar)

P0

Standard pressure (bar)

R

Reaction rate

R2

Coefficient of determination

R

Ideal gas constant (J/K/mol)

T

Absolute temperature (K)

T0

Absolute standard temperature (K)

y

Yield

Greak Symbols

ΔG0f

Gibbs free energy of formation at standard conditions (J/mol)

ΔG0r

Gibbs free energy of reaction at standard conditions (J/mol)

ΔGΦr,j

Gibbs free energy of reaction at 1 bar and chosen temperature (J/mol)

ΔGr,j

Gibbs free energy of reaction at a fixed temperature and pressure (J/mol)

ΔH0f

Enthalpy of formation at standard conditions (J/mol)

ΔH0r

Enthalpy of reaction at standard conditions (J/mol)

ρB

Catalyst bulk density

θ

Objective function

νi,j

Stoichiometric matrix composed by i components and j reactions (–)

Supplementary material

10562_2018_2478_MOESM1_ESM.docx (29 kb)
Supplementary Table S1 (DOCX 28 KB)

References

  1. 1.
    Pandey MP, Kim CS (2011) Lignin depolymerization and conversion. Chem Eng Technol 34:29–41CrossRefGoogle Scholar
  2. 2.
    Welker CM, Balasubramanian VK, Petti C, Rai KM, De Bolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–7676CrossRefGoogle Scholar
  3. 3.
    Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. J Agric Food Chem 58:9043–9053CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kim DE, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49:12156–12163CrossRefGoogle Scholar
  5. 5.
    Alriols MG, García A, Llano-Ponte R (2010) Combined organosolv and ultrafiltration lignocellulosic biorefinery process. Chem Eng J 117:113–120CrossRefGoogle Scholar
  6. 6.
    Huijgen WJJ, Reith JH (2010) Pretreatment and fractionation of wheat straw by an acetone-based organosolv process. Ind Eng Chem Res 49:10132–10140CrossRefGoogle Scholar
  7. 7.
    Wang H, Tucker M, Ji Y, Recent development in chemical depolymerization of lignin. Appl Chem (2013).  https://doi.org/10.1155/2013/838645 CrossRefGoogle Scholar
  8. 8.
    Toledano A. Serrano L. Labidi J (2012) Organosolv lignin depolymerization with different base catalysts. Chem Technol Biotechnol 87:1593–1599CrossRefGoogle Scholar
  9. 9.
    Hussin MH, Rahim AA, Ibrahim MNM, Brosse N (2013) Physicochemical characterization of alkaline and ethanol organosolv lignins from palm oil (Elaeis guineensis) fronds as phenol substitutes for green material applications. Ind Crops Prod 49:23–32CrossRefGoogle Scholar
  10. 10.
    Oh S, Hwang H, Choi HS, Choi JW (2015) The effects of noble metal catalysts of the bio-oil quality during the hydrodeoxygenative upgrading process. Fuel 153:535–543CrossRefGoogle Scholar
  11. 11.
    He L, Qin Y, Lou H. Chen P (2015) Highly dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Adv 5:43141–43147CrossRefGoogle Scholar
  12. 12.
    Jiang L, Zhou P, Zhang Z, Jin S (2018) Nitrogen-doped carbon supported Co catalysts: an effective none-noble metal catalyst for the upgrade of biofuels. ChemSusChem.  https://doi.org/10.1002/cssc.201702078
  13. 13.
    Yang H, Nie R, Wang X, Yu X, Jin D, Lu X, Zhou D (2017) Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chem 19:5714–5722CrossRefGoogle Scholar
  14. 14.
    Zhang X, Tang W, Zhang Q, Wang T, Ma L (2017) Hydrocarbons production from lignin-derived phenolic compounds over Ni/SiO2 catalyst. Energy Procedia 105:518–523CrossRefGoogle Scholar
  15. 15.
    Zhang X, Zhang Q, Wang T, Ma T, Yu Y, Chen L (2013) Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts. Biores Technol 134:73–80CrossRefGoogle Scholar
  16. 16.
    Nie R, Yang H, Zhang YH, Yu X, Zhou X, Zia Q (2017) Mild temperature hydrodeoxygenation of vanillin over porous nitrogen-doped carbon black supported nickel nanoparticles. Green Chem 19:3126–3134CrossRefGoogle Scholar
  17. 17.
    Parsell TH, Owen BC, Klein I, Jamell TM, Marcum CL, Haupert LJ, Amundson LM, Kenttämaa HI, Ribeiro F, Miller JT, Abu-Omar MM (2013) Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysts. Chem Sci 4:806–813CrossRefGoogle Scholar
  18. 18.
    Jiang H, Yu X, Peng X, Zhang H, Nie R, Lu X, Zhou D, Xia Q (2016) Efficient aqueous hydrodeoxygenation of vanillin over mesoporous carbon-nitride modified Pd nanoparticles. RSC Adv 6:69045–69051CrossRefGoogle Scholar
  19. 19.
    Zhu Z, Tan H, Wang J, Yu S, Zhou K (2014) Hydrodeoxygenation of vanillin as a bio-oil model over carbonaceous microspheres-supported Pd catalysts in the aqueous phase and Pickering emulsions. Green Chem 16:2636–2643CrossRefGoogle Scholar
  20. 20.
    Lv Z, Meng X, Xiao F-S (2013) Superhydrophilic mesoporous sulfonated melamine-formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. J Mat Chem A 1:8630–8635CrossRefGoogle Scholar
  21. 21.
    Bindwal AB, Vaidya PD (2014) Reaction kinetics of vanillin hydrogenation in aqueous solutions using a Ru/C catalyst. Energy Fuels 28:3357–3362CrossRefGoogle Scholar
  22. 22.
    Yang XM, Liang YY, Cheng YY, Song W, Wang XF, Wang ZC, Qiu JS (2014) Hydrodeoxygenation of vanillin over carbon nanotube-supported Ru catalysts assembled at the interface of emulsion droplets. Catal Commun 47:28–31CrossRefGoogle Scholar
  23. 23.
    Yang XM, Liang Y, Zhao X, Song YF, Hu LH, Wang ZC, Qiu JS (2014) Au/CNTs catalyst fir highly selective hydrodeoxygenation of vanillin at the water/oil interface. RSC Adv 4:31932–31936CrossRefGoogle Scholar
  24. 24.
    Zemansky MW, Abbott MM, Van Ness HC (1975) Basic engineering thermodynamics. McGraw-Hill, New YorkGoogle Scholar
  25. 25.
    Mebane RC, Mansfield AJ (2005) Transfer hydrogenation of aldehydes with 2-propanol and Raney nickel. Synth Comm 5:3083–3086CrossRefGoogle Scholar
  26. 26.
    Mäki-Arvela P, Tokarev A, Murzina E, Campo B, Heikkilä T, Brozinski J, Wolf D, Murzin D (2011) Kinetics of lactose and rhamnose oxidation over supported metal catalysts. Phys Chem Chem Phys 13:9268–9280CrossRefPubMedGoogle Scholar
  27. 27.
    Santos JL, Alda-Onggar M, Fedorov V, Peurla M, Eränen K, Mäki-Arvela P, Centeno MA, Murzin DY (2018) Hydrodeoxygenation of vanillin over carbon supported metal catalysts. Appl Catal A 561:137–149CrossRefGoogle Scholar
  28. 28.
    Risner C, Kiser M, High-performance liquid chromatography procedure for the determination of flavor enhancers in consumer chocolate products and artificial flavors. J Sci Food Agric 88:1423–1430 (2008)CrossRefGoogle Scholar
  29. 29.
    Joback KG, Reid RC (1987) Estimation of pure-component properties from group-contributions. Chem Eng Comm 57:233–243CrossRefGoogle Scholar
  30. 30.
    Badawi M, Paul JF, Cristol S, Payen E, Romero Y, Richard F, Brunet S, Lambert D, Portier X, Popov A, Kondratieva E, Goupil JM, Fallah El J, Gilson JP, Mariey L, Travert A, Mague F (2011) Effect of water on the stability of Mo and CoMo hydrodeoxygenation catalysts: a combined experimental and DFT study. J Catal 282:155–164CrossRefGoogle Scholar
  31. 31.
    Deepa AK, Dhepe PL (2014) Function of metals and supports on the hydrodeoxygenaiton of phenolic compounds. ChemPlusChem 79:1573–1583CrossRefGoogle Scholar
  32. 32.
    Lee WS, Wang Z, Wu RJ, Bhan A (2014) Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts. J Catal 319:44–53CrossRefGoogle Scholar
  33. 33.
    Prasomsri T, Shetty M, Murugappan K, Roman Leshkov Y (2014) Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ Sci 7:2660–2669CrossRefGoogle Scholar
  34. 34.
    Haario H (2007) MODEST users guide. Profmath Oy, HelsinkiGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alexandrina Sulman
    • 1
  • Päivi Mäki-Arvela
    • 1
  • Louis Bomont
    • 1
  • Vyacheslav Fedorov
    • 1
  • Moldir Alda-Onggar
    • 1
  • Annika Smeds
    • 1
  • Jarl Hemming
    • 1
  • Vincenzo Russo
    • 2
  • Johan Wärnå
    • 1
  • Mats Käldström
    • 3
  • Dmitry Yu. Murzin
    • 1
    Email author
  1. 1.Johan Gadolin Process Chemistry CentreÅbo Akademi UniversityTurkuFinland
  2. 2.Università di Napoli Federico IINaplesItaly
  3. 3.Neste CorporationPorvooFinland

Personalised recommendations