Skip to main content
Log in

Facilely Prepared N-Doped Graphene/Pt/TiO2 as an Efficient Anode for Acetaminophen Degradation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This study developed nitrogen-doped graphene/Pt/TiO2 (N-GN/Pt/TiO2) as anode to effectively degrade aminophenol (APAP) in electrocatalytic process. Due to the different physicochemical properties of graphene with various N species loading, the efficiency of catalysts was novelty discussed. The morphology, N-doped content/species, and the graphene defects of the catalyst were analyzed by TEM, FTIR, XPS, EA, and Raman spectroscopy. The results show that the doping morphology of the N atoms gradually shifted from pyridinic N and pyrrolic N to graphitic N with increased hydrothermal time, in order to decrease the defect degrees and redox activity. However, the conductivity of material increased with the graphitic N generation. The best APAP degradation efficiency (100% with 20 mA, 1 g/L NaCl, and initial pH 3.0) can be achieved with 1.5-N-GN/Pt/TiO2 (mainly pyridinic N and pyrrolic N doping). A detailed investigation was conducted to determine the oxidation intermediates of APAP using GC-MS analysis. Finally, a possible degradation pathway was proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rajkumar D, Palanivelu K (2004) Electrochemical treatment of industrial wastewater. J Hazard Mater 113:123–129

    Article  CAS  PubMed  Google Scholar 

  2. Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407

    Article  CAS  PubMed  Google Scholar 

  3. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energ Environ Sci 5:8848–8868

    Article  CAS  Google Scholar 

  4. Yan Y, Yin Y, Xin S, Guo Y, Wan L (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem Commun 48:10663

    Article  CAS  Google Scholar 

  5. Liu Q, Lin Y, Fan J, Lv D, Min Y, Wu T, Xu Q (2016) Well-dispersed palladium nanoparticles on three-dimensional hollow N-doped graphene frameworks for enhancement of methanol electro-oxidation. Electrochem Commun 73:75–79

    Article  CAS  Google Scholar 

  6. Liu D, Li L, You T (2017) Superior catalytic performances of platinum nanoparticles loaded nitrogen-doped graphene toward methanol oxidation and hydrogen evolution reaction. J Colloid Interface Sci 487:330–335

    Article  CAS  PubMed  Google Scholar 

  7. Sheng Z, Shao L, Chen J, Bao W, Wang F, Xia X (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  CAS  PubMed  Google Scholar 

  8. Lin Z, Waller G, Liu Y, Liu M, Wong C (2012) Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater 2:884–888

    Article  CAS  Google Scholar 

  9. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Engl 52:3110–3116

    Article  CAS  PubMed  Google Scholar 

  10. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Li Y, Tang L (2009) Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun 11:846–849

    Article  CAS  Google Scholar 

  12. Sun L, Wang L, Tian C, Tan T, Xie Y, Shi K, Li M, Fu H (2012) Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Adv 2:4498

    Article  CAS  Google Scholar 

  13. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115:11170–11176

    Article  CAS  Google Scholar 

  14. Li TS, Loh KS, Mohamad AB, Wan RWD (2016) The effect of varying N/C ratios of nitrogen precursors during non-metal graphene catalyst synthesis. Int J Hydrog Energy 42:9069–9076

    Google Scholar 

  15. Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13:17505

    Article  CAS  PubMed  Google Scholar 

  16. Tao H, Liang X, Zhang Q, Chang CT (2015) Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of acetaminophen. Appl Surf Sci 324:258–264

    Article  CAS  Google Scholar 

  17. Zhang Q, Huang W, Chen BY, Hong JM (2018) Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2. Chem Eng J 343:662–675

    Article  CAS  Google Scholar 

  18. Joshi AA, Locke BR, Arce P, Finney WC (1995) Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J Hazard Mater 41:3–30

    Article  CAS  Google Scholar 

  19. Zhao L, Wang Z, Liu J, Zhang J, Sui X, Zhang L, Gu D (2015) Facile one-pot synthesis of Pt/graphene-TiO2 hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217

    Article  CAS  Google Scholar 

  20. Wang P, Zhan S, Xia Y, Ma S, Zhou Q, Li Y (2017) The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl Catal B 207:335–346

    Article  CAS  Google Scholar 

  21. Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109:4707–4716

    Article  CAS  PubMed  Google Scholar 

  22. Shao Y, Sui J, Yin G, Gao (2008) Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Appl Catal B 79:89–99

    Article  CAS  Google Scholar 

  23. Brindha A, Sivakumar T (2017) Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J Photochem Photobiol A 340:146–156

    Article  CAS  Google Scholar 

  24. Zhang T, Li C, Gu Y, Yan X, Zheng B, Li Y, Liu H, Lu N, Zhang Z, Feng G (2017) Fabrication of novel metal-free “graphene alloy” for the highly efficient electrocatalytic reduction of H2O2. Talanta 165:143–151

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232

    Article  CAS  Google Scholar 

  26. Min S, Lu G (2012) Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution. Int J Hydrog Energy 37:10564–10574

    Article  CAS  Google Scholar 

  27. Vinodgopal K, Neppolian B, Salleh N, Lightcap IV, Grieser F, Ashokkumar M, Ding TT, Kamat PV (2012) Dual-frequency ultrasound for designing two dimensional catalyst surface: Reduced graphene oxide–Pt composite. Colloids Surf A 409:81–87

    Article  CAS  Google Scholar 

  28. Chekin F, Bagheri S, Abd Hamid SB (2013) Synthesis of Pt doped TiO2 nanoparticles: characterization and application for electrocatalytic oxidation of l-methionine. Sens Actuators B 177:898–903

    Article  CAS  Google Scholar 

  29. Wohlgemuth S, White RJ, Willinger M, Titirici M, Antonietti M (2012) A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem 14:1515

    Article  CAS  Google Scholar 

  30. Xiong B, Zhou Y, O’ Hayre R, Shao Z (2013) Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts. Appl Surf Sci 266:433–439

    Article  CAS  Google Scholar 

  31. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8:36–41

    Article  CAS  PubMed  Google Scholar 

  32. Kang Y, Wang W, Pu Y, Li J, Chai D, Lei Z (2017) An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: co-existed phosphorus and nickel oxide to enhance performance of Pd. Chem Eng J 308:419–427

    Article  CAS  Google Scholar 

  33. Liu Y, Zhu Y, Fan X, Wang S, Li Y, Zhang F, Peng W (2017) (0D/3D) MoS2 on porous graphene as catalysts for enhanced electrochemical hydrogen evolution. Carbon 121:163–169

    Article  CAS  Google Scholar 

  34. Wei Y, Li X, Sun X, Ma H, Zhang Y, Wei Q (2017) Dual-responsive electrochemical immunosensor for prostate specific antigen detection based on Au-CoS/graphene and CeO2/ionic liquids doped with carboxymethyl chitosan complex. Biosens Bioelectron 94:141–147

    Article  CAS  PubMed  Google Scholar 

  35. Chen Z, Zhang Y, Zhou L, Zhu H, Wan F, Wang Y, Zhang D (2017) Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic oxidation of simulated Bisphenol A wastewaters. J Hazard Mater 332:70–78

    Article  CAS  PubMed  Google Scholar 

  36. Wu W, Huang Z, Lim T (2016) A comparative study on electrochemical oxidation of bisphenol A by boron-doped diamond anode and modified SnO2-Sb anodes: Influencing parameters and reaction pathways. J Environ Chem Eng 4:2807–2815

    Article  CAS  Google Scholar 

  37. Khongthon W, Jovanovic G, Yokochi A, Sangvanich P, Pavarajarn V (2016) Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor. Chem Eng J 292:298–307

    Article  CAS  Google Scholar 

  38. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407

    Article  CAS  PubMed  Google Scholar 

  39. Scialdone O, Randazzo S, Galia A, Silvestri G (2009) Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Res 43:2260–2272

    Article  CAS  PubMed  Google Scholar 

  40. Barhoumi N, Labiadh L, Oturan MA, Oturan N, Gadri A, Ammar S, Brillas E (2015) Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process. Chemosphere 141:250–257

    Article  CAS  PubMed  Google Scholar 

  41. Indrawirawan S, Sun H, Duan X, Wang S (2015) Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. J Mater Chem 3:3432–3440

    Article  CAS  Google Scholar 

  42. Cardoso JC, Lizier TM, Zanoni MVB (2010) Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl Catal B 99:96–102

    Article  CAS  Google Scholar 

  43. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Yu LE, Ray MB (2009) Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ Sci Technol 43:460–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Fujian province Science and Technology project Foundation (2017I01010015), Xiamen Technology project Foundation (3502Z20173050, 3502Z20140057, 3502Z20153025, 3502Z20173052), Quanzhou Technology project Foundation (2016Z074, 2018z002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ming Hong.

Ethics declarations

Conflict of interest

All the authors declare there is not any competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Huang, W., Zhang, Q. et al. Facilely Prepared N-Doped Graphene/Pt/TiO2 as an Efficient Anode for Acetaminophen Degradation. Catal Lett 148, 2418–2431 (2018). https://doi.org/10.1007/s10562-018-2466-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2466-5

Keywords

Navigation