Skip to main content
Log in

Replication of SMSI via ALD: TiO2 Overcoats Increase Pt-Catalyzed Acrolein Hydrogenation Selectivity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effects of sub-nanometer atomic layer deposition films of titania and alumina are compared for the acrolein hydrogenation selectivity of Pt/SrTiO3 catalysts. The titania-overcoated catalyst is similar to strong metal-support interaction catalysts formed by high temperature reduction, with a thin titania film on top of the supported Pt nanoparticles and an increase in allyl alcohol selectivity, neither of which are observed for the alumina-overcoated catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170–175

    Article  CAS  Google Scholar 

  2. Tauster SJ, Fung SC (1978) J Catal 55:29–35

    Article  CAS  Google Scholar 

  3. Huizinga T, Prins R (1981) J Phys Chem 85:2156–2158

    Article  CAS  Google Scholar 

  4. Tauster SJ, Fung SC, Baker RT, Horsley JA (1981) Science 211:1121–1125

    Article  CAS  PubMed  Google Scholar 

  5. Tauster SJ (1987) Acc Chem Res 20:389–394

    Article  CAS  Google Scholar 

  6. Haller GL, Resasco DE (1989) Adv Catal 36:173–235

    CAS  Google Scholar 

  7. Bernal S, Calvino JJ, Cauqui MA, Gatica JM, López Cartes C, Pérez Omil JA, Pintado JM (2003) Catal Today 77:385–406

    Article  CAS  Google Scholar 

  8. Kliewer CE, Miseo S, Baumgartner JE, Stach EA, Zakharov D (2009) Microsc Microanal 15:1066–1067

    Article  Google Scholar 

  9. Liu JJ (2011) ChemCatChem 3:934–948

    Article  CAS  Google Scholar 

  10. Zhang S, Plessow PN, Willis JJ, Dai S, Xu M, Graham GW, Cargnello M, Abild-Pedersen F, Pan X (2016) Nano Lett 16:4528–4534

    Article  CAS  PubMed  Google Scholar 

  11. Ko EI, Hupp JM, Wagner NJ (1984) J Catal 86:315–327

    Article  CAS  Google Scholar 

  12. O’Shea VA, Galvan MC, Prats AE, Campos-Martin JM, Fierro JL (2011) Chem Commun (Camb) 47:7131–7133

    Article  CAS  Google Scholar 

  13. Bond GC (1983) Platin Met Rev 27:16–18

    Google Scholar 

  14. da Costa Faro A Jr, Kemball C (1995) J Chem Soc Faraday Trans 91:741–748

    Article  Google Scholar 

  15. Vannice MA, Sen B (1989) J Catal 115:65–78

    Article  CAS  Google Scholar 

  16. Vannice MA (1997) Top Catal 4:241–248

    Article  Google Scholar 

  17. Vannice MA, Twu CC (1983) J Catal 82:213–222

    Article  CAS  Google Scholar 

  18. Englisch M, Jentys A, Lercher JA (1997) J Catal 166:25–35

    Article  CAS  Google Scholar 

  19. Dandekar A, Vannice MA (1999) J Catal 183:344–354

    Article  CAS  Google Scholar 

  20. Yoshikate H, Iwasawa Y (1991) J Catal 125:227–242

    Google Scholar 

  21. Kennedy G, Baker LR, Somorjai GA (2014) Angew Chem Int Ed Engl 53:3405–3408

    Article  CAS  PubMed  Google Scholar 

  22. Yoshitake H, Iwasawa Y (1992) J Chem Soc Faraday Trans 88:503–510

    Article  CAS  Google Scholar 

  23. Nelson RC, Baek B, Ruiz P, Goundie B, Brooks A, Wheeler MC, Frederick BG, Grabow LC, Austin RN (2015) ACS Catal 5:6509–6523

    Article  CAS  Google Scholar 

  24. Serna P, Corma A (2015) ACS Catal 5:7114–7121

    Article  CAS  Google Scholar 

  25. Corma A, Serna P, Concepción P, Juan Calvino J (2008) J Am Chem Soc 130:8748–8753

    Article  CAS  PubMed  Google Scholar 

  26. Kast P, Friedrich M, Teschner D, Girgsdies F, Lunkenbein T, Naumann d’Alnoncourt R, Behrens M, Schlögl R (2015) Appl Catal A Gen 502:8–17

    Article  CAS  Google Scholar 

  27. Blankenburg KJ, Datye AK (1991) J Catal 128:186–197

    Article  CAS  Google Scholar 

  28. Herrmann J-M (1989) J Catal 118:43–52

    Article  CAS  Google Scholar 

  29. Duprez D, Miloudi A (1982) In: Imelik B, Coudurier G, Praliaud H, Meriaudeau P, Gallezot P, Martin GA, Vedrine JC, BT—Studies in Surface Science and Catalysis CN (eds) Metal-Support and Metal-Additive Effects in Catalysis Proceedings of an International Symposium organized by the Institut de Recherches sur la Catalyse—CNRS—Villeurbanne and sponsored by the Centre National de la Recherche Scientifique. Elsevier, New York, pp 179–184

  30. Ajayan PM, Marks LD (1989) Nature 338:139–141

    Article  CAS  Google Scholar 

  31. Liu W, Jiang Y, Dostert KH, O’Brien CP, Riedel W, Savara A, Schauermann S, Tkatchenko A (2017) Sci Adv 3:1–8

    Google Scholar 

  32. Gallezot P, Richard D (1998) Catal Rev Sci Eng 40:81–126

    Article  CAS  Google Scholar 

  33. Kliewer CJ, Bieri M, Somorjai GA (2009) J Am Chem Soc 131:9958–9966

    Article  CAS  PubMed  Google Scholar 

  34. Enterkin JA, Kennedy RM, Lu J, Elam JW, Cook RE, Marks LD, Stair PC, Marshall CL, Poeppelmeier KR (2013) Top Catal 56:1829–1834

    Article  CAS  Google Scholar 

  35. Engelhardt C, Kennedy RM, Enterkin J, Poeppelmeier K, Ellis D, Marshall C, Stair P (2018) ChemCatChem 10:632–641

    Article  CAS  Google Scholar 

  36. Azadi P, Carrasquillo-Flores R, Pagán-Torres YJ, Gürbüz EI, Farnood R, Dumesic JA (2012) Green Chem 14:1573

    Article  CAS  Google Scholar 

  37. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  38. Krahling L, Krey J, Jakobson G, Grolig J, Miksche L (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken

    Google Scholar 

  39. Singh UK, Vannice MA (2001) Appl Catal A Gen 213:1–24

    Article  CAS  Google Scholar 

  40. Moberg DR, Thibodeau TJ, Amar FG, Frederick BG (2010) J Phys Chem C 114:13782–13795

    Article  CAS  Google Scholar 

  41. Dong Y, Zaera F (2018) J Phys Chem Lett 9:1301–1306

    Article  CAS  PubMed  Google Scholar 

  42. de Jesús JC, Zaera F (1999) Surf Sci 430:99–115

    Article  Google Scholar 

  43. Lu J, Elam JW, Stair PC (2016) Surf Sci Rep 71:410–472

    Article  CAS  Google Scholar 

  44. Puurunen RL (2005) J Appl Phys 97:121301

    Article  CAS  Google Scholar 

  45. Knapas K, Ritala M (2013) Crit Rev Solid State Mater Sci 38:167–202

    Article  CAS  Google Scholar 

  46. George SM (2010) Chem Rev 110:111–131

    Article  CAS  PubMed  Google Scholar 

  47. Stair PC (2008) J Chem Phys 128:182507

    Article  CAS  PubMed  Google Scholar 

  48. Alba-Rubio AC, O’Neill BJ, Shi F, Akatay C, Canlas C, Li T, Winans R, Elam JW, Stach EA, Voyles PM, Dumesic JA (2014) ACS Catal 4:1554–1557

    Article  CAS  Google Scholar 

  49. Lu J, Fu B, Kung MC, Xiao G, Elam JW, Kung HH, Stair PC (2012) Science 335:1205–1208

    Article  CAS  PubMed  Google Scholar 

  50. Canlas CP, Lu J, Ray NA, Grosso-Giordano NA, Lee S, Elam JW, Winans RE, Van Duyne RP, Stair PC, Notestein JM (2012) Nat Chem 4:1030–1036

    Article  CAS  PubMed  Google Scholar 

  51. O’Neill B, Jackson DHK, Lee J, Canlas C, Stair PC, Marshall CL, Elam JW, Kuech TF, Dumesic JA, Huber GW (2015) ACS Catal 15:1804

    Article  CAS  Google Scholar 

  52. Boudart M (2000) Top Catal 13:147–149

    Article  CAS  Google Scholar 

  53. Lin Y, Wen J, Hu L, Kennedy RM, Stair PC, Poeppelmeier KR, Marks LD (2013) Phys Rev Lett 111:156101

    Article  CAS  PubMed  Google Scholar 

  54. Crosby LA, Kennedy RM, Chen B-R, Wen J, Poeppelmeier KR, Bedzyk MJ, Marks LD (2016) Nanoscale 8:16606–16611

    Article  CAS  PubMed  Google Scholar 

  55. Crosby LA, Chen B-R, Kennedy RM, Wen J, Poeppelmeier KR, Bedzyk MJ, Marks LD (2018) Chem Mater 30:841–846

    Article  CAS  Google Scholar 

  56. Crosby L, Enterkin J, Rabuffetti F, Poeppelmeier KR, Marks L (2015) Surf Sci 632:L22–L25

    Article  CAS  Google Scholar 

  57. Enterkin JA, Poeppelmeier KR, Marks LD (2011) Nano Lett 11:993–997

    Article  CAS  PubMed  Google Scholar 

  58. Enterkin JA, Setthapun W, Elam JW, Christensen ST, Rabuffetti FA, Marks LD, Stair PC, Poeppelmeier KR, Marshall CL (2011) ACS Catal 1:629–635

    Article  CAS  Google Scholar 

  59. Christensen ST, Elam JW, Rabuffetti FA, Ma Q, Weigand SJ, Lee B, Seifert S, Stair PC, Poeppelmeier KR, Hersam MC, Bedzyk MJ (2009) Small 5:750–757

    Article  CAS  PubMed  Google Scholar 

  60. Setthapun W, Williams WD, Kim SM, Feng H, Elam JW, Rabuffetti FA, Poeppelmeier KR, Stair PC, Stach EA, Ribeiro FH, Miller JT, Marshall CL (2010) J Phys Chem C 114:9758–9771

    Article  CAS  Google Scholar 

  61. Lin Y, McCarthy JA, Poeppelmeier KR, Marks LD (2015) Applications of electron microscopy in heterogeneous catalysis. Elsevier, New York

    Book  Google Scholar 

  62. Yang X, Mueanngern Y, Baker QA, Baker LR (2016) Catal Sci Technol 6:6824–6835

    Article  CAS  Google Scholar 

  63. Wang C, Wang H, Yao Q, Yan H, Li J, Lu J (2016) J Phys Chem C 120:478–486

    Article  CAS  Google Scholar 

  64. Yao Q, Wang C, Wang H, Yan H, Lu J (2016) J Phys Chem C 120:9174–9183

    Article  CAS  Google Scholar 

  65. Bai Y, Wang C, Zhou X, Lu J, Xiong Y (2016) Prog Nat Sci Mater Int 26:289–294

    Article  CAS  Google Scholar 

  66. Rabuffetti FA, Kim H-S, Enterkin JA, Wang Y, Lanier CH, Marks LD, Poeppelmeier KR, Stair PC (2008) Chem Mater 20:5628–5635

    Article  CAS  Google Scholar 

  67. Lu J, Stair PC (2010) Langmuir 26:16486–16495

    Article  CAS  PubMed  Google Scholar 

  68. Ray NA, Van Duyne RP, Stair PC (2012) J Phys Chem C 116:7748–7756

    Article  CAS  Google Scholar 

  69. Lu J, Kosuda KM, Van Duyne RP, Stair PC (2009) J Phys Chem C 113:12412–12418

    Article  CAS  Google Scholar 

  70. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  71. Freel J (1972) J Catal 160:149–160

    Article  Google Scholar 

  72. Li T, Karwal S, Aoun B, Zhao H, Ren Y, Canlas CP, Elam JW, Winans RE (2016) Chem Mater 28:7082–7087

    Article  CAS  Google Scholar 

  73. Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) J Appl Phys 113:021301

    Article  CAS  Google Scholar 

  74. Rase HF (1990) Fixed-bed reactor design and diagnostics: gas-phase reactions. Butterworths, London

    Google Scholar 

  75. Lu J, Liu B, Greeley JP, Feng Z, Libera JA, Lei Y, Bedzyk MJ, Stair PC, Elam JW (2012) Chem Mater 24:2047–2055

    Article  CAS  Google Scholar 

  76. Lu J, Liu B, Guisinger NP, Stair PC, Greeley JP, Elam JW (2014) Chem Mater 26:6752–6761

    Article  CAS  Google Scholar 

  77. Ono LK, Yuan B, Heinrich H, Cuenya BR (2010) J Phys Chem C 114:22119–22133

    Article  CAS  Google Scholar 

  78. Zhang Z, Li L, Yang JC (2013) J Phys Chem C 117:21407–21412

    Article  CAS  Google Scholar 

  79. Somorjai GA, Carrarza J (1986) Ind Eng Chem Fundam 25:63–69

    Article  CAS  Google Scholar 

  80. Che M, Bennett CO (1989) Adv Catal 36:55–172

    CAS  Google Scholar 

  81. Wei H, Gomez C, Liu J, Guo N, Wu T, Lobo-Lapidus R, Marshall CL, Miller JT, Meyer RJ (2013) J Catal 298:18–26

    Article  CAS  Google Scholar 

  82. Weerachawanasak P, Praserthdam P, Arai M, Panpranot J (2008) J Mol Catal A 279:133–139

    Article  CAS  Google Scholar 

  83. Prins R (2012) Chem Rev 112:2714–2738

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontiers Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. RMK and LAC acknowledge funding from Northwestern University Institute for Catalysis in Energy Processes (ICEP) on Grant No. DOE DE-FG02-03-ER15457. Electron microscopy was performed at the EPIC facility supported by the NU-MRSEC program (NSF DMR-1121262) and at the UIC Research Resources Center supported by the MRI-R2 grant from the National Science Foundation (NSF DMR-0959470). The CleanCat Core facility acknowledges funding from the Department of Energy (DE-FG02-03-ER15457) used for the purchase of the Altamira AMI-200. Metal analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center.

Author information

Authors and Affiliations

Authors

Contributions

Electron microscopy was performed by LAC and AG. Atomic layer deposition of Pt and Al2O3 was performed by CPC (Grace, formerly ANL) and JWE (ANL). Atomic layer deposition of TiO2 was by KD (NU). This manuscript was written with contribution of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Peter C. Stair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 798 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, R.M., Crosby, L.A., Ding, K. et al. Replication of SMSI via ALD: TiO2 Overcoats Increase Pt-Catalyzed Acrolein Hydrogenation Selectivity. Catal Lett 148, 2223–2232 (2018). https://doi.org/10.1007/s10562-018-2458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2458-5

Keywords

Navigation