Skip to main content
Log in

Photoelectron Spectromicroscopy Through Graphene of Oxidised Ag Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Performing electron based spectroscopies at ambient pressure environments, for instance, to investigate catalytic reactions, when the energy of the electrons is below 1.5 keV is extremely challenging. This limitation, known as the “pressure gap”, was to some extent overcome about 15 years ago for X-ray photoelectron spectroscopy (XPS) experiments made at near ambient pressure, but only recently the first pioneering experiments at true ambient pressure with XPS have been realized. These investigations use graphene (Gr)-sealed cells to separate the ambient and vacuum environments by exploiting the properties of Gr to create a barrier for the transmission of liquids or gases and to be partially transparent to low energy photoelectrons. In such cells, the Gr membrane can be used as a bare substrate for other materials or can be an active part of a system. When nanoparticles are deposited or grown on the Gr membrane and exposed to an ambient pressure environment a raising question is if the areas of the nanoparticles directly in contact with Gr will experience the same environment conditions as the areas freely exposed to the atmospheric pressure. To answer to this question we have designed a pilot experiment where Ag nanoparticles are grown on one side of the Gr and ex-situ exposed to molecular oxygen to investigate the oxidation rate of the Ag atoms in contact with the Gr and those directly exposed to the oxygen molecules. Spatially resolved photoemission and high resolution scanning electron microscopy measurements have demonstrated that also the Ag atoms at the interface between Gr and Ag nanoparticles experiences the environment, showing, in our case, an oxidation comparable with that of the other areas of the nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegbahn K (1990) J Electron Spectrosc Relat Phenom 51:11–36

    Article  CAS  Google Scholar 

  2. Fellnerfeldegg H, Siegbahn H, Asplund L, Kelfve P, Siegbahn K (1975) J Electron Spectrosc Relat Phenom 7:421

    Article  CAS  Google Scholar 

  3. Siegbahn H (1985) J Phys Chem 89(6):897–909

    Article  CAS  Google Scholar 

  4. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872

    Article  CAS  Google Scholar 

  5. Kelly MA, Shek ML, Pianetta P, Gur TM, Beasley MR (2001) J Vac Sci Technol A19:2127

    Article  CAS  Google Scholar 

  6. Kolmakov A, Dikin DA, Cote LJ, Huang H, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M (2011) Nat Nanotechnol 6–10:651–657

    Article  CAS  Google Scholar 

  7. Amati M, Abyaneh KM, Gregoratti L (2013) J Instrum 8:T05001

    Article  CAS  Google Scholar 

  8. Kraus J, Reichelt R, Gunther S, Gregoratti L, Amati M, Kiskinova M, Yulaev A, Vlassiouk I, Kolmakov A (2014) Nanoscale 6–23:14394–14403

    Article  CAS  Google Scholar 

  9. Salmeron M, Schlögl R (2008) Surf Sci Rep 63(4):69–199

    Article  CAS  Google Scholar 

  10. Velasco-Velez JJ, Pfeifer V, Hävecker M, Weatherup RS, Arrigo R, Chuang C-H, Stotz E, Weinberg G, Salmeron M, Schlögl R, Knop-Gericke A (2015) Angew Chem Int Ed 54:14554–14558

    Article  CAS  Google Scholar 

  11. Karslıoğlu O, Nemšák S, Zegkinoglou I, Shavorskiy A, Hartl M, Salmassi F, Gullikson EM, Ng ML, Rameshan C, Rude B, Bianculli D, Cordones AA, Axnanda S, Crumlin EJ, Ross PN, Schneider CM, Hussain Z, Liu Z, Fadley CS, Bluhm H (2015) Faraday Discuss 35:180

    Google Scholar 

  12. Tsunemi E, Watanabe Y, Oji H, Cui Y-T, Son J-Y, Nakajimaless A (2015) J Appl Phys 117:234902

    Article  CAS  Google Scholar 

  13. Lee SJ, Kim Y, Hwang J-Y, Lee JH, Jung S, Park H, Cho S, Nahm S, Yang WS, Kim H, Han SH (2017) Sci Rep 7(1):3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Z, Bluhm H (2016) Hard X-ray photoelectron spectroscopy (HAXPES). In: Springer series in surface sciences—liquid/solid interfaces studied by ambient pressure HAXPES, vol 59. pp 447–466

  15. Yin K, Zhang Y-Y, Zhou Y, Sun L, Chisholm MF, Pantelides ST, Zhou W (2017) 2D Mater 4:011001

    Article  CAS  Google Scholar 

  16. Stoica T, Stoica M, Duchamp M, Tiedemann A, Mantl S, Grützmacher D, Buca D, Kardyna BE (2017) Nano Res 9:3504–3514

    Article  CAS  Google Scholar 

  17. Bueno RA, Martínez JI, Luccas RF, Del Árbol NR, Munuera C, Palacio I, Palomares FJ, Lauwaet K, Thakur S, Baranowski JM, Strupinski W, López MF, Mompean F García-Hernández M, Martín-Gago JA (2017) Nat Commun 8:15306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bardhan NM, Kumar PV, Li Z, Ploegh HL, Grossman JC, Belcher AM, Chen G-Y (2017) ACS Nano 11(2):1548–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. La Notte L, Villari E, Palma AL, Sacchetti A, Michela Giangregorio M, Bruno G, Di Carlo A, Bianco GV, Reale A (2017) Nanoscale 9(1):62–69

    Article  CAS  PubMed  Google Scholar 

  20. Komori K, Terse-Thakoor T, Mulchandani A (2015) ACS Appl Mater Interfaces 7(6):3647–3654

    Article  CAS  PubMed  Google Scholar 

  21. Qie L, Lin Y, Connell JW, Xu J, Dai L (2017) Angew Chem Int Ed 56(24):6970–6974

    Article  CAS  Google Scholar 

  22. Frindy S, El Kadib A, Lahcini M, Primo A, García H (2016) ACS Catal 6(6):3863–3869

    Article  CAS  Google Scholar 

  23. Scardamaglia M, Aleman B, Amati M, Ewels C, Pochet P, Reckinger N, Colomer J-F, Skaltsas T, Tagmatarchis N, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 73:371–381

    Article  CAS  Google Scholar 

  24. Gunther S, Kaulich B, Gregoratti L, Kiskinova M (2002) Prog Surf Sci 70:187

    Article  CAS  Google Scholar 

  25. Gregoratti L, Barinov A, Benfatto E, Cautero G, Fava C, Lacovig P, Lonza D, Kiskinova M, Tommasini R, Mahl S (2004) Rev Sci Instrum 75:64

    Article  CAS  Google Scholar 

  26. Gunther S, Kolmakov A, Kovac J, Kiskinova M (1998) Ultramicroscopy 75:35

    Article  CAS  Google Scholar 

  27. Marsi M, Casalis L, Gregoratti L, Günther S, Kolmakov A, Kovac J, Lonza D, Kiskinova M (1997) J Electron Spectrosc Relat Phenom 84:73

    Article  CAS  Google Scholar 

  28. Ferraria AM, Carapeto AP, Botelho do Rego AM (2012) Vacuum 86:1988–1991

    Article  CAS  Google Scholar 

  29. Schön G (1973) Acta Chem Scand 27:2623

    Article  Google Scholar 

  30. Al-Hada M, Peters S, Peredkov S, Neeb M, Eberhardt W (2015) Surf Sci 639:43–47

    Article  CAS  Google Scholar 

  31. Al-Hada M, Peters S, Gregoratti L, Amati M, Sezen H, Parisse P, Selve S, Niermann T, Berger D, Neeb M, Eberhardt W (2017) Surf Sci 665:108–113

    Article  CAS  Google Scholar 

  32. Weaver JF, Hoflund GB (1994) Chem Mater 6:1693

    Article  CAS  Google Scholar 

  33. Tjeng LH, Meinders MBJ, van Elp J, Ghijsen J, Sawatzky GA, Johnson RL (1990) Phys Rev B 41:3190

    Article  CAS  Google Scholar 

  34. Guenther S, Reichelt R, Wintterlin J, Barinov A, Mentes TO, Nino M, Locatelli A (2008) Appl Phys Lett 93:233117

    Article  CAS  Google Scholar 

  35. Ruffino F, Giannazzo F (2017) Crystals 7(7):219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ICTP and Elettra are gratefully acknowledged for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gregoratti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hada, M., Amati, M., Sezen, H. et al. Photoelectron Spectromicroscopy Through Graphene of Oxidised Ag Nanoparticles. Catal Lett 148, 2247–2255 (2018). https://doi.org/10.1007/s10562-018-2451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2451-z

Keywords

Navigation