Advertisement

Catalysis Letters

, Volume 148, Issue 9, pp 2636–2642 | Cite as

Biomimetic Cleavage of Aryl–Nitrogen Bonds in N-Arylazoles Catalyzed by Metalloporphyrins

  • Zongjiang Yu
  • Guoqing Zhai
  • Mo Xian
  • Ming Lu
  • Pengcheng Wang
  • Tao Jiang
  • Chao Xu
  • Weizhi Sun
Article
  • 158 Downloads

Abstract

The cleavage of C–N single bonds of N-containing compounds provides either an excellent nitrogen source or an excellent carbon source. In this study, an efficient metalloporphyrins/H2O2 cleavage of C–N bonds of arylpyrazoles was investigated. The effects of different factors, including different catalysts, catalyst dosages, H2O2 dosages, reaction temperature and reaction time were studied. The experimental results showed that the optimal catalyst was FeTPPCl, and the yield of pyrazole derivatives could reach up to 12.3%, which was fourfold higher than hemin catalyzed reaction and closed to ceric ammonium nitrate catalyzed reaction, respectively. Compared with transition-metal-catalyzed and strong-oxidization cleavage of C–N bonds, this protocol is characterized by environmentally-friendly, stable, mild reaction conditions and simplified operation procedures.

Graphical Abstract

Keywords

Biomimetic Metalloporphyrins Cleavage of C–N bonds 

Notes

Acknowledgements

This work was supported by the Research Project of Post-doctoral application of Qingdao.

References

  1. 1.
    Wang T, Jiao N (2014) Acc Chem Res 47:1137–1145CrossRefPubMedGoogle Scholar
  2. 2.
    Turner NJ (2011) Chem Rev 111:4073–4087CrossRefPubMedGoogle Scholar
  3. 3.
    Escoubet S, Gastaldi S, Bertrand M (2005) Eur J Org Chem 18:3855–3873CrossRefGoogle Scholar
  4. 4.
    Gu Y, Tian S (2013) Synlett 24:1170–1185CrossRefGoogle Scholar
  5. 5.
    Yang Q, Wang Q, Yu Z (2015) Chem Soc Rev 44:2305–2329CrossRefPubMedGoogle Scholar
  6. 6.
    Ouyang K, Hao W, Zhang W, Xi Z (2015) Chem Rev 115:12045–12090CrossRefPubMedGoogle Scholar
  7. 7.
    Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255–263CrossRefPubMedGoogle Scholar
  8. 8.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879–2932CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang C, Sun C, Hu B, Yu C, Lu M (2017) Science 355:374–376CrossRefPubMedGoogle Scholar
  10. 10.
    Park YJ, Park JW, Jun CH (2008) Acc Chem Res 41:222–234CrossRefPubMedGoogle Scholar
  11. 11.
    Kim DS, Park WJ, Jun CH (2017) Chem Rev 117:8977–9015CrossRefPubMedGoogle Scholar
  12. 12.
    Li B, Yu D, Sun C, Shi Z (2011) Chem Eur J 17:1728–1759CrossRefPubMedGoogle Scholar
  13. 13.
    Cornella J, Zarate C, Martin R (2014) Chem Soc Rev 43:8081–8097CrossRefPubMedGoogle Scholar
  14. 14.
    Akiyama F, Miyazaki H, Kaneda K, Teranishi S (1980) J Org Chem 45:2359–2361CrossRefGoogle Scholar
  15. 15.
    Laine RM, Thomas DW, Cary LW (1982) J Am Chem Soc 104:1763–1765CrossRefGoogle Scholar
  16. 16.
    Wang D, Kawahata M, Yang Z, Miyamoto K, Komagawa S, Yamaguchi K, Wang C, Uchiyama M (2016) Nat Commun 7:12937CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cannella R, Clerici A, Panzeri W, Pastori N, Punta C, Porta O (2006) J Am Chem Soc 128:5358–5359CrossRefPubMedGoogle Scholar
  18. 18.
    Zarei M, Jarrahpour A, Ebrahimi E, Aye M, Torabi BSA (2012) Tetrahedron 68:5505–5512CrossRefGoogle Scholar
  19. 19.
    Nicolaou KC, Montagnon T, Snyder SA (2003) Chem Comm 5:551–564CrossRefGoogle Scholar
  20. 20.
    Marchetti L, Levine M (2011) ACS Catal 1:1090–1118CrossRefGoogle Scholar
  21. 21.
    Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008) J Org Chem 73:1354–1364CrossRefPubMedGoogle Scholar
  22. 22.
    Liu L, Wu F, Liu Y, Xie J, Dai B, Zhou Z (2014) J Chem Res 38:180–182CrossRefGoogle Scholar
  23. 23.
    Sloopa JC, Bumgardner CL, Loehle WD (2002) J Fluor Chem 118:135–147CrossRefGoogle Scholar
  24. 24.
    Vincz C, Rath R, Smith GM, Yilmaz B, McGuire R (2015) Appl Catal A 495:39–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bio-based Materials, Institute of Biotechnology, Qingdao Institute of Biomass Energy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
  3. 3.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations