Skip to main content
Log in

Sulfur-Resistant CO Methanation to CH4 Over MoS2/ZrO2 Catalysts: Support Size Effect On Morphology and Performance of Mo Species

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, the effect of ZrO2 particle size on the surficial and structural properties and catalytic performance of Mo-based catalysts towards sulfur-resistant methanation was investigated. The results showed that the catalytic activity correlated closely with the particle size of ZrO2. The supports and catalysts were characterized by N2-adsorption, XRD, Raman, H2-TPR and TEM to obtain the information about their morphology and structure in order to understand the structure–activity relationship. The results evidence that smaller ZrO2 particle not only had higher surface area which was beneficial for the dispersion of surface Mo species, but also weaken the interaction between MoO3 and support. Since them, ZrO2 support with small particle size favors the formation of monolayer MoS2 with short length. Catalytic activity evaluation determined that MoS2/ZrO2 catalyst with smaller ZrO2 particle size exhibited higher catalytic activity of sulfur-resistant CO methanation due to more edge sites on MoS2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li Z, Liu J, Wang H et al (2013) Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas. J Mol Catal A: Chem 378:99–108

    Article  CAS  Google Scholar 

  2. Liu J, Wang E, Lv J et al (2013) Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Process Technol 110:249–257

    Article  CAS  Google Scholar 

  3. Jiang M, Wang B, Yao Y et al (2013) The role of the distribution of Ce species on MoO3/CeO2-Al2O3 catalysts in sulfur-resistant methanation. Catal Commun 35:32–35

    Article  CAS  Google Scholar 

  4. Li Z, Tian Y, He J et al (2014) High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. J Nat Gas Chem 23(5):625–632

    CAS  Google Scholar 

  5. Xie H, Lu J, Shekhar M et al (2016) Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction. ACS Catal 3(1):61–73

    Article  CAS  Google Scholar 

  6. Nabgan W, Abdullah TAT, Mat R et al (2016) Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int J Hydrog Energy 41(48):22922–22931

    Article  CAS  Google Scholar 

  7. Samson K, Śliwa M, Socha RP et al (2016) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4(10):3730–3741

    Article  CAS  Google Scholar 

  8. Stagg-Williams SM, Fendley G, Resasco DE et al (2000) CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J Catal 194(2):240–249

    Article  CAS  Google Scholar 

  9. Xu BQ, Wei JM, Yu YT et al (2003) Carbon dioxide reforming of methane over nanocomposite Ni/ZrO2 catalysts. Top Catal 22(1):77–85

    Article  CAS  Google Scholar 

  10. Souza PMD, Neto RCR, Borges LEP et al (2015) Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2. ACS Catal 5(12):7385–7398

    Article  CAS  Google Scholar 

  11. Mortensen PM, Carvalho HWPD, Grunwaldt JD et al (2015) Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. J Catal 328(4):208–215

    Article  CAS  Google Scholar 

  12. Ma ZY, Yang C, Wei W et al (2005) Catalytic performance of copper supported on zirconia polymorphs for CO hydrogenation. J Mol Catal A: Chem 231(1–2):75–81

    Article  CAS  Google Scholar 

  13. Wang YH, Gao WG, Zheng YE et al (2014) The influence of Zn/Zr ratios on CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Adv Mater 941–944:425–429

    Google Scholar 

  14. Guo X, Mao D, Lu G et al (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A: Chem 345(1):60–68

    Article  CAS  Google Scholar 

  15. Jin G, Lu G, Guo Y et al (2004) Direct epoxidation of propylene with molecular oxygen over Ag-MoO3/ZrO2 catalyst. Catal Today 93–95:173–182

    Article  CAS  Google Scholar 

  16. Xu BQ, Wei JM, Yu YT et al (2003) Size limit of support particles in an oxide-supported metal catalyst: nanocomposite Ni/ZrO2 for utilization of natural gas. J Phys Chem B 107(22):5203–5207

    Article  CAS  Google Scholar 

  17. Li S, Li M, Zhang C et al (2012) Steam reforming of ethanol over Ni/ZrO2 catalysts: effect of support on product distribution. Int J Hydrog Energy 37(3):2940–2949

    Article  CAS  Google Scholar 

  18. Li S, Zhang C, Huang Z et al (2013) A Ni@ZrO2 nanocomposite for ethanol steam reforming: enhanced stability via strong metal-oxide interaction. Chem Commun 49(39):4226–4228

    Article  CAS  Google Scholar 

  19. Jiang M, Wang B, Yao Y et al (2013) Effect of sulfidation temperature on CoO-MoO3/γ-Al2O3 catalyst for sulfur-resistant methanation. Catal Sci Technol 3(10):2793–2800

    Article  CAS  Google Scholar 

  20. Wang B, Ding G, Shang Y et al (2012) Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Appl Catal A: Gen 431–432:144–150

    Article  CAS  Google Scholar 

  21. Jiang M, Wang B, Yao Y et al (2013) A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. Appl Surf Sci 285(1):267–277

    Article  CAS  Google Scholar 

  22. Gregorio FD, Keller V (2004) Activation and isomerization of hydrocarbons over WO3/ZrO2 catalysts: I. Preparation, characterization, and X-ray photoelectron spectroscopy studies. J Catal 225(1):45–55

    Article  CAS  Google Scholar 

  23. Fan Y, Cheng S, Wang H et al (2017) Pt-WOx on monoclinic or tetrahedral ZrO2: crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol. Appl Catal B: Environ 217(15):331–341

    Article  CAS  Google Scholar 

  24. Li W, Zhao Z, Jiao Y et al (2016) Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane. Chin J Catal 37(12):2122–2133

    Article  CAS  Google Scholar 

  25. Chen K, Xie S, Iglesia E et al (2000) Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J Catal 189(2):421–430

    Article  CAS  Google Scholar 

  26. Kim DS, Wachs IE, Segawa K (1994) Molecular structures and reactivity of supported molybdenum oxide catalysts. J Catal 149(2):268–277

    Article  CAS  Google Scholar 

  27. Xie S, Chen K, Bell AT et al (2005) Structural characterization of molybdenum oxide supported on zirconia. J Phys Chem B 104(43):10059–10068

    Article  Google Scholar 

  28. González-Cortés SL, Xiao TC, Lin TW et al (2006) Influence of double promotion on HDS catalysts prepared by urea-matrix combustion synthesis. Appl Catal A: Gen 302(2):264–273

    Article  CAS  Google Scholar 

  29. Signorile M, Damin A, Budnyk A et al (2015) MoS2 supported on P25 titania: a model system for the activation of a HDS catalyst. J Catal 328(15):225–235

    Article  CAS  Google Scholar 

  30. Kim MY, Ha SB, Koh DJ et al (2013) CO methanation over supported Mo catalysts in the presence of H2S. Catal Commun 35(17):68–71

    Article  CAS  Google Scholar 

  31. Lee C, Yan H, Brus LE et al (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Zhang Q, Yap CCR et al (2012) From bulk to monolayer MoS2: evolution of raman scattering. Adv Funct Mater 22(7):1385–1390

    Article  CAS  Google Scholar 

  33. Cesano F, Bertarione S, Piovano A et al (2011) Model oxide supported MoS2 HDS catalysts: structure and surface properties. Catal Sci Technol 1(1):123–136

    Article  CAS  Google Scholar 

  34. Liu Z, Xu Y, Cheng J et al (2017) Comparative study on cubic and tetragonal CexZr1–xO2 supported MoO3 catalysts for sulfur-resistant methanation. Appl Surf Sci 433:730

    Article  CAS  Google Scholar 

  35. Liu C, Wang W, Xu Y et al (2018) Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst. Appl Surf Sci 441:482–490

    Article  CAS  Google Scholar 

  36. Fu Y, Tang X, Huang Z et al (1989) Valency and adsorption characteristics of a sulphided MoO3/γ-Al2O3 methanation catalyst. Appl Catal 55(1):11–20

    Article  CAS  Google Scholar 

  37. Vrinat M, Breysse M, Geantet C et al (1994) Effect of MoS2 morphology on the HDS activity of hydrotreating catalysts. Catal Lett 26(1):25–35

    Article  CAS  Google Scholar 

  38. Yang L, Wang X, Liu Y et al (2017) Layer-dependent catalysis of MoS2/graphene nanoribbon composites for efficient hydrodesulfurization. Catal Sci Technol 7(3):693–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Financial supports from National Natural Science Foundation of China (21606167 and 21576203) and National High Technology Research and Development Program of China (2015AA050504) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihan Wang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, W., Liu, Z. et al. Sulfur-Resistant CO Methanation to CH4 Over MoS2/ZrO2 Catalysts: Support Size Effect On Morphology and Performance of Mo Species. Catal Lett 148, 2585–2595 (2018). https://doi.org/10.1007/s10562-018-2438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2438-9

Keywords

Navigation