Skip to main content
Log in

Nitrate Reduction of Brines from Water Desalination Plants Employing a Low Metallic Charge Pd, In Catalyst and Formic Acid as Reducing Agent

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Brines from desalination plants lead to adverse environmental impact; therefore, their treatment by catalytic reduction has become a topic of increasing interest. This work aims to apply catalytic reduction to the treatment of water with high nitrate concentration, employing a low noble metal loading in the catalyst (Pd 1%, In 0.25%). Catalytic nitrate removal was evaluated under various conditions, e.g. at different pH values, by assessing the N2 stripping effect, and by modifying the method of pH correction. A change on the final step of the synthesis was also evaluated as well as the reduction of the active phase by means of H2 flux or by the reduction in the aqueous phase with hydrazine. The synthesis method through hydrazine reduction showed catalytic activity and selectivity comparable to those shown by the hydrogen-reduction method. It was found that activity and selectivity can be manipulated. The ratio between nitrate eliminated and Pd mass employed proved to be very high, and among the best ratios reported so far. The best conditions to obtain total nitrate conversion were obtained when the pH was controlled between 4 and 5. The stripping with N2 to the reaction media resulted in lower selectivity to ammonium. The hydrazine-reduced catalyst characterization showed that the nanoparticles were well dispersed on the surface and had an indium: palladium surface ratio higher than that in the bulk, while the H2-reduced catalyst had more Pd on the surface with lower dispersion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Franch C, Rodríguez-Castellón E, Reyes-Carmona Á, Palomares AE (2012) Appl Catal A: Gen 425–426 145

  2. Jain S, Bansiwal A, Biniwale RB, Milmille S, Das S, Tiwari S, Siluvai Antony P (2015) J Environ Chem Eng 3:2342

    Article  CAS  Google Scholar 

  3. Gutiérrez M, Biagioni RN, Alarcón-Herrera MT, Rivas-Lucero BA (2018) Science of The Total Environ 624:1513

    Article  CAS  Google Scholar 

  4. Bosko ML, Rodrigues MAS, Ferreira JZ, Miró EE, Bernardes AM (2014) J Memb Sci 451:276

    Article  CAS  Google Scholar 

  5. Zoppas FM, Marchesini FA, Devard A, Bernardes AM, Miró EE (2016) Catal Com 78:59

    Article  CAS  Google Scholar 

  6. Marchesini FA, Irusta S, Querini C, Miró E (2008) Appl Catal A: Gen 348:60

    Article  CAS  Google Scholar 

  7. Marchesini FA, Picard N, Miró EE (2012) Catal Com 21:9

    Article  CAS  Google Scholar 

  8. Barrabés N, Sá J (2011) Appl Catal B: Environ 104:1

    Article  CAS  Google Scholar 

  9. Fan X, Franch C, Palomares E, Lapkin AA (2011) Chem Eng J 175:458

    Article  CAS  Google Scholar 

  10. Hu M, Liu Y, Yao Z, Ma L, Wang X (2017) Front Environ Sc Eng 12:3

    Article  CAS  Google Scholar 

  11. Kim M-S, Chung S-H, Yoo C-J, Lee MS, Cho I-H, Lee D-W, Lee K-Y (2013) Appl Catal B: Environ 142–143 354

  12. Soares OSGP., Órfão JJM, Pereira MFR (2008) Catal Lett 126:253

    Article  CAS  Google Scholar 

  13. Soares OSGP., Órfão JJM, Pereira MFR (2010) Catal Lett 139:97

    Article  CAS  Google Scholar 

  14. Prüsse U, Vorlop K-D (2001) J Mol Catal A: Chem 173:313

    Article  Google Scholar 

  15. Prüsse U, Hähnlein M, Daum J, Vorlop K-D (2000) Catal Tod 55:79

    Article  Google Scholar 

  16. Mielby J, Kunov-Kruse AJ, Kegnæs S (2017) J Catal 345:149

    Article  CAS  Google Scholar 

  17. Liu P, Gu X, Zhang H, Cheng J, Song J, Su H (2017) Appl Catal B: Environ 204:497

    Article  CAS  Google Scholar 

  18. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Nat Nanotech 6:302

    Article  CAS  Google Scholar 

  19. Garron A, Epron F (2005) Wat Res 39:3073

    Article  CAS  Google Scholar 

  20. Choi E-k, Park K-h, Lee H-b, Cho M, Ahn S (2013) J Environ Sc 25:1696

    Article  CAS  Google Scholar 

  21. Ding Y, Sun W, Yang W, Li Q (2017) Appl Catal B: Environ 203:372

    Article  CAS  Google Scholar 

  22. Wisniewski C, Persin F, Cherif T, Sandeaux R, Grasmick A, Gavach C (2001) Desal 139:199

    Article  CAS  Google Scholar 

  23. Wisniewski C, Persin F, Cherif T, Sandeaux R, Grasmick A, Gavach C, Lutin F (2002) Desal 149:331

    Article  CAS  Google Scholar 

  24. Perez-Coronado AM, Calvo L, Baeza JA, Palomar J, Lefferts L, Rodriguez JJ, Gilarranz MA (2017) Ind Eng Chem Res 56:11745

    Article  CAS  Google Scholar 

  25. Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM (2004) J Catal 221:325

    Article  CAS  Google Scholar 

  26. Chen JP, Lim LL (2002) Chem 49:363

    CAS  Google Scholar 

  27. Baylet A, Royer S, Marécot P, Tatibouët JM, Duprez D (2008) Appl Catal B: Environ 81:88

    Article  CAS  Google Scholar 

  28. Cobo M (2008) A. Quintero and C.M.d. Correa, Catal Tod 133–135 509

  29. Berry FJ, Smart LE, Sai Prasad PS, Lingaiah N, Kanta P, Rao (2000) Appl Catal A: Gen 204:191

    Article  CAS  Google Scholar 

  30. Marchesini FA, Gutierrez LB, Querini CA, Miró EE (2010) Chem Eng J 159:203

    Article  CAS  Google Scholar 

  31. Marchesini FA (2008) Tecnologías Catalíticas para el tratamiento de aguas. Eliminación de Nitratos y Nitritos utilizando catalizadores bimetálicos. Universidad Nacional del Litoral, Santa Fe

    Google Scholar 

  32. Martínez J, Ortiz A, Ortiz I (2017) Appl Catal B: Environ 207:42

    Article  CAS  Google Scholar 

  33. Jaworski MA, Lick ID, Siri GJ, Casella ML (2014) Appl Catal B: Environ 156–157 53

  34. Domínguez-Domínguez S, Berenguer-Murcia Á, Linares-Solano Á, Cazorla-Amorós D (2008) J Catal 257:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support received from ANPCyT (PICT) (2014-1379, 2014-2408) for the purchase of the SPECS multitechnique analysis instrument (PME8-2003), UNL, CYTED and Project CAPES-MERCOSUR (CAPG-BA). Thanks, are also given to Maria Fernanda Mori from INCAPE-CONICET and to José Fernandez from PRELINE-CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Marchesini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Zoppas, F., M. Bernardes, A., Miró, E.E. et al. Nitrate Reduction of Brines from Water Desalination Plants Employing a Low Metallic Charge Pd, In Catalyst and Formic Acid as Reducing Agent. Catal Lett 148, 2572–2584 (2018). https://doi.org/10.1007/s10562-018-2429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2429-x

Keywords

Navigation