Catalysis Letters

, Volume 148, Issue 8, pp 2359–2372 | Cite as

A New Green and Efficient Brønsted: Lewis Acidic DES for Pyrrole Synthesis

  • M. Shaibuna
  • Letcy V. Theresa
  • K. Sreekumar


Deep eutectic solvents (DESs) are fluids composed of different Lewis or Brønsted acids and bases, generally acknowledged as new analogues to ionic liquids (ILs), because of their similar characteristics, but with more advantages related to preparation cost, environmental impact etc. Their preparation involve the simple mixing of two components generally with moderate heating that are inexpensive, non-toxic, biodegradable and the resulting mixture is capable to overcome the drawbacks of conventional organic solvents and ILs. Chemical reactions with these materials are significantly less hazardous and they can act as catalysts as well as reaction media. Here, three new DESs based on ZrOCl2·8H2O in combination with urea, ethylene glycol and glycerol are introduced. Physicochemical properties like phase behaviour, Freezing point, density, viscosity, thermal stability and miscibility properties in common solvents are determined. In addition, a new method for the determination of acidity of DESs having both Brønsted and Lewis sites is also introduced in this work. A convenient synthesis of pyrrole through Paal–Knorr reaction is reported using a variety of amines which are used to establish the importance of this catalyst in organic reactions. The products are analysed by GC–MS, 1H NMR and 13C NMR. By comparing the three DESs, DES 1 (formed from ZrOCl2·8H2O with urea) has the lowest density, viscosity, highest acidity and thermal stability. It was shown to be an excellent green catalyst for Paal–Knorr reaction. Reusability of the catalyst was also achieved up to 4 runs, without significant loss in its catalytic activity.

Graphical Abstract


Deep eutectic solvents (DESs) Green catalyst Brønsted and Lewis acidity Phase behaviour Paal–Knorr reaction 



The authors thank SAIF STIC, CUSAT for various analysis (TGA, DSC, 1H NMR & 13C NMR) and Cochin University of Science and Technology for financial support.

Supplementary material

10562_2018_2414_MOESM1_ESM.pdf (1.5 mb)
Supporting Information File 1: GC MS and NMR spectra of compounds (PDF 1509 KB)


  1. 1.
    Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) ACS Sustain Chem Eng 2:1063–1071CrossRefGoogle Scholar
  2. 2.
    Wang X, Jiang W, Zhu W, Li H, Yin S, Chang Y, Li H (2016) RSC Adv 6:30345–30352CrossRefGoogle Scholar
  3. 3.
    Hong S, Lian H, Sun X, Pan D, Carranza A, Pojman JA, Mota-Morales JD (2016) RSC Adv 6:89599–89608CrossRefGoogle Scholar
  4. 4.
    Agostino CD, Harris RC, Abbott AP, Gladdena LF, Mantle MD (2011) Phys Chem Chem Phys 13:21383–22139CrossRefPubMedGoogle Scholar
  5. 5.
    Smith EL, Abbott AP, Ryder KS (2014) Chem Rev 114:11060–11082CrossRefPubMedGoogle Scholar
  6. 6.
    Nguyen HT, Tran PH (2016) RSC Adv 6:98365–98368CrossRefGoogle Scholar
  7. 7.
    Liu P, Hao J, Mo L, Zhang Z (2015) RSC Adv 5:48675–48704CrossRefGoogle Scholar
  8. 8.
    Vidal C, Merz L, Garcia-Alvarez J (2015) Green Chem 17:3870–3878CrossRefGoogle Scholar
  9. 9.
    Tran PH, Hang AT (2018) RSC Adv 8:11127–11133CrossRefGoogle Scholar
  10. 10.
    Anastas PT, Warner JC (1998) Green chemistry theory and practice. Oxford University Press, CambridgeGoogle Scholar
  11. 11.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) J Am Chem Soc 126:9142–9147CrossRefPubMedGoogle Scholar
  12. 12.
    Ge X, Gu C, Wang X, Tu J (2017) J Mater Chem A 5:8209–8229CrossRefGoogle Scholar
  13. 13.
    Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Chem Eur J 13:6495–6501CrossRefPubMedGoogle Scholar
  14. 14.
    Abbott AP, Al-Barzinjy AA, Abbott PD, Frisch G, Harris RC, Hartley J, Ryder KS (2014) Phys Chem Chem Phys 16:9047–9055CrossRefPubMedGoogle Scholar
  15. 15.
    García G, Aparicio S, Ullah R, Atilhan M (2015) Energy Fuels 29:2616–2644CrossRefGoogle Scholar
  16. 16.
    López-Porfiri P, Brennecke JF, Gonzalez-Miquel M (2016) J Chem Eng Data 61:4245–4251CrossRefGoogle Scholar
  17. 17.
    Pandey A, Bhawna, Dhingra D, Pandey S (2017) J Phys Chem B 121:4202–4212CrossRefPubMedGoogle Scholar
  18. 18.
    Alonso DA, Baeza A, Chinchilla A, Guillena G, Pastor IM, Ramon DJ (2016) Eur J Org Chem 4:612–632CrossRefGoogle Scholar
  19. 19.
    Pena-Pereira F, Kloskowski A, Namieśnik J (2015) Green Chem 17:3687–3705CrossRefGoogle Scholar
  20. 20.
    Vidal C, Garcia-Alvarez J, Hernan-Gomez A, Kennedy AR, Hevia E (2016) Angew Chem Int Ed 55:16145–16148CrossRefGoogle Scholar
  21. 21.
    Obst M, Srivastava A, Baskaran S, König B (2018) Synlett 29:185–188CrossRefGoogle Scholar
  22. 22.
    Gore S, Baskaran S, König B (2011) Green Chem 13:1009–1013CrossRefGoogle Scholar
  23. 23.
    Gore S, Baskaran S, König B (2012) Org Lett 14:4568–4571CrossRefPubMedGoogle Scholar
  24. 24.
    Tao L, Wang ZJ, Yan TH, Liu YM, He HY, Cao Y (2017) ACS Catal 7:959–964CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhang J, Ma J, Cheng DJ, Tan B (2017) J Am Chem Soc 139:1714–1717CrossRefPubMedGoogle Scholar
  26. 26.
    Jisha KA, Sreekumar K (2017) Catal Lett 147:964–975CrossRefGoogle Scholar
  27. 27.
    Nguyen HT, Chau DKN, Tran PH (2017) New J Chem 41:12481–12489CrossRefGoogle Scholar
  28. 28.
    Estevez V, Villacampa M, Carlos Menendez JC (2013) Chem Commun 49:591–593CrossRefGoogle Scholar
  29. 29.
    Arcadi A, Rossi E (1998) Tetrahedron 54:15253–15272CrossRefGoogle Scholar
  30. 30.
    Katritzky AR, Jiang J, Steel PJ (1994) J Org Chem 59:4551–4556CrossRefGoogle Scholar
  31. 31.
    Kamal A, Faazil S, Malik MS, Balakrishna M, Bajee S, Siddiqui MRH, Alarifi A (2016) Arab J Chem 9:542–549CrossRefGoogle Scholar
  32. 32.
    Barton DHR, Kervagoret J, Zard SZ (1990) Tetrahedron 46:5340–7587Google Scholar
  33. 33.
    Yuan SZ, Liu J, Xu L (2010) Chin Chem Lett 21:664–668CrossRefGoogle Scholar
  34. 34.
    Aghapoor K, Ebadi-Nia L, Mohsenzadeh F, Morad MM, Balavar Y, Darabi HR (2012) J Organomet Chem 708:25–30CrossRefGoogle Scholar
  35. 35.
    Curini M, Montanari F, Rosati O, Lioy E, Margarita R (2003) Tetrahedron Lett 44:3923–3925CrossRefGoogle Scholar
  36. 36.
    Rahmatpour A (2012) J Organomet Chem 712:15–19CrossRefGoogle Scholar
  37. 37.
    Banik BK, Samajdar S, Banik I (2004) J Org Chem 69:213–216CrossRefPubMedGoogle Scholar
  38. 38.
    Yu SX, Le Quesne PW (1995) Tetrahedron Lett 36:6205–6208CrossRefGoogle Scholar
  39. 39.
    Chen CY, Guo XY, Lu GQ, Pedersen CM, Qiao Y, Hou XL, Wang YX (2017) New Carbon Mater 32:160–167CrossRefGoogle Scholar
  40. 40.
    Wang B, Gu Y, Luo C, Yang T, Yang L, Suo J (2004) Tetrahedron Lett 45:3417–3419CrossRefGoogle Scholar
  41. 41.
    Dallinger D, Kappe CO (2007) Chem Rev 107:2563–2591CrossRefPubMedGoogle Scholar
  42. 42.
    Darabi HR, Aghapoor K, Farahani AD, Mohsenzadeh F (2012) Environ Chem Lett 10:369–375CrossRefGoogle Scholar
  43. 43.
    Veisi H (2010) Tetrahedron Lett 51:2109–2114CrossRefGoogle Scholar
  44. 44.
    Chen JX, Liu MC, Yang XL, Ding JC, Wu HY (2008) J Braz Chem Soc 19:877–883CrossRefGoogle Scholar
  45. 45.
    Handy S, Lavender K (2013) Tetrahedron Lett 54:4377–4379CrossRefGoogle Scholar
  46. 46.
    Yadav JS, Reddy BV, Eashwaraiah B, Gupta MK (2004) Tetrahedron Lett 45:5873–5876CrossRefGoogle Scholar
  47. 47.
    Chen J, Wu H, Zheng Z, Jin C, Zhang X, Su W (2006) Tetrahedron Lett 47:5383–5387CrossRefGoogle Scholar
  48. 48.
    De SK (2008) Heteroat Chem 19:592–595CrossRefGoogle Scholar
  49. 49.
    Ballini R, Barboni L, Bosica G, Petrini M (2000) Synlett 11:391–393Google Scholar
  50. 50.
    Banik BK, Banik I, Renteria M, Dasgupta SK (2005) Tetrahedron Lett 46:2643–2645CrossRefGoogle Scholar
  51. 51.
    Cheraghi S, Saberi D, Heydari A (2014) Catal Lett 144:1339–1343CrossRefGoogle Scholar
  52. 52.
    Moradgholi F, Lari J, Baratian Y (2016) Russ J Gen Chem 86:2924–2927CrossRefGoogle Scholar
  53. 53.
    Devi A, Shallu SML, Singh J (2012) Synth Commun 42:1480–1488CrossRefGoogle Scholar
  54. 54.
    Abbott AP, Capper G, Davies DL, Rasheed R. Tambyrajah KV (2003) Chem Commun 1:70–71CrossRefGoogle Scholar
  55. 55.
    Naser J, Mjalli F, Jibril B, Al-Hatmi S, Gano Z (2013) Int J Chem Eng Appl 4:114–118Google Scholar
  56. 56.
    Francisco M, Bruinhorst A, Zubeir LF, Peters CJ, Kroon MC (2013) Fluid Phase Equilib 340:77–84CrossRefGoogle Scholar
  57. 57.
    Yusof R, Abdulmalek E, Sirat K, Rahman MBA (2014) Molecules 19:8011–8026CrossRefPubMedGoogle Scholar
  58. 58.
    Sanchez LG, Espel JR, Onink F, Meindersma GW, de Haan AB (2009) J Chem Eng Data 54:2803–2812CrossRefGoogle Scholar
  59. 59.
    Durand E, Lecomte J, Villeneuve P (2013) Eur J Lipid Sci Technol 115:379–385CrossRefGoogle Scholar
  60. 60.
    Krishnakumar V, Vindhya NG, Mandal BK, Nawaz Khan FR (2014) Ind Eng Chem Res 53:10814–10819CrossRefGoogle Scholar
  61. 61.
    Isernia LF (2013) Mater Res 16:792–802CrossRefGoogle Scholar
  62. 62.
    Reddy CR, Bhat YS, Nagendrappa G, Jai Prakash BS (2009) Catal Today 141:157–160CrossRefGoogle Scholar
  63. 63.
    Dai L, Zhao Q, Fang M, Liu R, Dong M, Jiang T (2017) RSC Adv 7:32427–32435CrossRefGoogle Scholar
  64. 64.
    Yang Y, Kou Y (2004) Chem Commun. CrossRefGoogle Scholar
  65. 65.
    Shiwei L, Congxia X, Shitao Y, Mo X, Fusheng L (2009) Chin J Catal 30:401–406CrossRefGoogle Scholar
  66. 66.
    Shiwei L, Congxia X, Shitao Y, Fusheng L (2008) Catal Commun 9:2030–2034CrossRefGoogle Scholar
  67. 67.
    Barzetti T, Selli E, Moscotti D, Forni L (1996) J Chem Soc Faraday Trans 92:1401–1407CrossRefGoogle Scholar
  68. 68.
    An H, Kang L, Gao W, Zhao X, Wang Y (2013) Green Sustain Chem 3:32–37CrossRefGoogle Scholar
  69. 69.
    Sushkevich VL, Vimont A, Travert A, Ivanova II (2015) J Phys Chem C 119:17633–17639CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryCochin University of Science and TechnologyKochiIndia

Personalised recommendations