Catalysis Letters

, Volume 148, Issue 9, pp 2799–2811 | Cite as

Catalytic Performance of Novel Hierarchical Porous Flower-Like NiCo2O4 Supported Pd in Lean Methane Oxidation

  • Qifu Huang
  • Wenzhi Li
  • Yanyan Lei
  • Shengnan Guan
  • Xusheng Zheng
  • Yang Pan
  • Wu Wen
  • Junfa Zhu
  • Haitao Zhang
  • Qizhao Lin


In this work, NiCo2O4 with a hierarchical porous flower-like structure was fabricated and used as catalyst support for Pd nanoparticles. The NiCo2O4 was composed of porous nanoplates without overlapping, and the Pd nanoparticles were uniformly distributed on these nanoplates. Pd–NiCo2O4 with the Pd loading of 2.0 wt% showed extremely high activity and stability, methane (1.0% CH4/Air) can be totally oxidized at 330 °C and the T90 is 309 °C, which is much lower than that of pure NiCo2O4 (T90 = 405 °C). At wet condition with the presence of 10 vol% water vapor, the catalytic activity was still acceptable with the T90 of 366 °C, and no activity decrease or permanent damage for the catalyst was observed after 35 h reaction, showing high stability. A series of techniques including TEM, SEM, XRD, H2-TPR, BET and especially quasi in situ XPS combined with in situ MS were used to characterize the catalysts and investigate the catalysis mechanism. Two pathways of CHO evolution were proved by the quasi in situ XPS and in situ MS results: OCHO intermediate dehydrogenation pathway at lower temperature and CO oxidation pathway of CHO at higher temperature.

Graphical Abstract


Methane Oxidation Catalytic combustion Quasi in situ XPS In situ mass spectrometry 



This work is supported by the National Natural Science Foundation of China (No. 51376171), the Science and Technological Fund of Anhui Province for Outstanding Youth (1508085J01) and the National Key Technology R&D Program of China (No. 2015BAD15B06).


  1. 1.
    Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Ser B 50:128–150. CrossRefGoogle Scholar
  2. 2.
    Ju Y, Sun Y, Sa Z et al (2016) A new approach to estimate fugitive methane emissions from coal mining in China. Sci Total Environ 543:514–523. CrossRefPubMedGoogle Scholar
  3. 3.
    Nisbet EG, Dlugokencky EJ, Manning MR et al (2016) Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochem Cycles 30:1356–1370. CrossRefGoogle Scholar
  4. 4.
    National Development and Reform Commission (2012) Second national communication on climate change of the People’s Republic of China. National Development and Reform Commission, BeijingGoogle Scholar
  5. 5.
    Yang Z, Grace JR, Lim CJ, Zhang L (2011) Combustion of low-concentration coal bed methane in a fluidized bed. Energy Fuels 25:975–980. CrossRefGoogle Scholar
  6. 6.
    Kalantar Neyestanaki A, Klingstedt F, Salmi T, Murzin DY (2004) Deactivation of postcombustion catalysts, a review. Fuel 83:395–408. CrossRefGoogle Scholar
  7. 7.
    Venezia AM, Di Carlo G, Pantaleo G et al (2009) Oxidation of CH4 over Pd supported on TiO2-doped SiO2: effect of Ti(IV) loading and influence of SO2. Appl Catal B 88:430–437CrossRefGoogle Scholar
  8. 8.
    Corro G, Cano C, Fierro JLG (2010) A study of Pt–Pd/γ-Al2O3 catalysts for methane oxidation resistant to deactivation by sulfur poisoning. J Mol Catal A 315:35–42CrossRefGoogle Scholar
  9. 9.
    Cargnello M, Jaen JJD, Garrido JCH et al (2012) Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337:713–717. CrossRefPubMedGoogle Scholar
  10. 10.
    Eguchi K, Arai H (2001) Low temperature oxidation of methane over Pd-based catalysts—effect of support oxide on the combustion activity. Appl Catal A 222:359–367. CrossRefGoogle Scholar
  11. 11.
    Hu L, Peng Q, Li Y (2008) Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J Am Chem Soc 130:16136–16137. CrossRefPubMedGoogle Scholar
  12. 12.
    Barbato PS, Di Benedetto A, Di Sarli V et al (2012) High-pressure methane combustion over a perovskyte catalyst. Ind Eng Chem Res 51:7547–7558. CrossRefGoogle Scholar
  13. 13.
    Barbato PS, Di Sarli V, Landi G, Di Benedetto A (2015) High pressure methane catalytic combustion over novel partially coated LaMnO3-based monoliths. Chem Eng J 259:381–390. CrossRefGoogle Scholar
  14. 14.
    Di Benedetto A, Landi G, Di Sarli V et al (2012) Methane catalytic combustion under pressure. Catal Today 197:206–213. CrossRefGoogle Scholar
  15. 15.
    Shao C, Li W, Lin Q et al (2017) Low temperature complete combustion of lean methane over cobalt-nickel mixed-oxide catalysts. Energy Technol 5:604–610. CrossRefGoogle Scholar
  16. 16.
    Yashnik SA, Surovtsova TA, Ishchenko AV et al (2016) Structure and properties of Pd–Mn hexaaluminate catalysts modified with platinum for the high-temperature oxidation of methane. Kinet Catal 57:528–539CrossRefGoogle Scholar
  17. 17.
    Schwartz WR, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: support interactions. J Phys Chem C 116:8571–8578. CrossRefGoogle Scholar
  18. 18.
    Murata K, Mahara Y, Ohyama J et al (2017) The metal-support interaction concerning the particle size effect of Pd/Al2O3 on methane combustion. Angew Chem Int Ed 8520:15993–15997. CrossRefGoogle Scholar
  19. 19.
    Li Z, Hoflund GB (2003) A review on complete oxidation of methane at low temperatures. J Nat Gas Chem 12:153–160Google Scholar
  20. 20.
    Li Z, Hoflund GB (1999) Catalytic oxidation of methane over Pd/Co3O4. React Kinet Catal Lett 66:367–374. CrossRefGoogle Scholar
  21. 21.
    Kucharczyk B, Tylus W (2008) Effect of washcoat modification with metal oxides on the activity of a monolithic Pd-based catalyst for methane combustion. Catal Today 137:324–328. CrossRefGoogle Scholar
  22. 22.
    Hu L, Peng Q, Li Y (2011) Low-temperature CH4 catalytic combustion over Pd catalyst supported on Co3O4 nanocrystals with well-defined crystal planes. ChemCatChem 3:868–874. CrossRefGoogle Scholar
  23. 23.
    Tao FF, Shan J, Nguyen L et al (2015) Understanding complete oxidation of methane on spinel oxides at a molecular level. Nat Commun 6:7798. CrossRefPubMedGoogle Scholar
  24. 24.
    Di Sarli V, Landi G, Lisi L, Di Benedetto A (2017) Ceria-coated diesel particulate filters for continuous regeneration. AIChE J 63(8):3442–3449CrossRefGoogle Scholar
  25. 25.
    Di Sarli V, Landi G, Lisi L, Saliva A, Di Benedetto A (2016) Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Appl Catal B: Environ 197:116–124CrossRefGoogle Scholar
  26. 26.
    Xu Q, Kharas KC, Croley BJ, Datye AK (2011) The sintering of supported Pd automotive catalysts. ChemCatChem 3:1004–1014. CrossRefGoogle Scholar
  27. 27.
    De Rogatis L, Cargnello M, Gombac V et al (2010) Embedded phases: a way to active and stable catalysts. ChemSusChem 3:24–42CrossRefPubMedGoogle Scholar
  28. 28.
    Cargnello M, Wieder NL, Montini T et al (2010) Synthesis of dispersible Pd @ CeO2 core-shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409. Scholar
  29. 29.
    Bakhmutsky K, Wieder NL, Cargnello M et al (2012) A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M = Pd, Pt; oxide = TiO2, ZrO2) nanostructures by self-assembly. ChemSusChem 5:140–148. CrossRefPubMedGoogle Scholar
  30. 30.
    Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew Chem 122:1293–1296. CrossRefGoogle Scholar
  31. 31.
    Gu H, Yang Z, Gao J et al (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35CrossRefPubMedGoogle Scholar
  32. 32.
    Huang Q, Li W, Lin Q et al (2016) A review of significant factors in the synthesis of hetero-structured dumbbell-like nanoparticles. Chinese J Catal 37:681–691. CrossRefGoogle Scholar
  33. 33.
    Huang Q, Li W, Lin Q et al (2017) Catalytic performance of Pd-NiCo2O4/SiO2 in lean methane combustion at low temperature. J Energy Inst. CrossRefGoogle Scholar
  34. 34.
    Lee JH, Trimm DL (1995) Catalytic combustion of methane. Fuel Process Technol 42:339–359CrossRefGoogle Scholar
  35. 35.
    Li L, Cheah Y, Ko Y et al (2013) The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties. J Mater Chem A 1:10935–10941. CrossRefGoogle Scholar
  36. 36.
    Luo L, Tang X, Wang W et al (2013) Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy. Sci Rep 3:1–7. CrossRefGoogle Scholar
  37. 37.
    Qi F, Yang R, Yang B et al (2006) Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization. Rev Sci Instrum 77:84101. CrossRefGoogle Scholar
  38. 38.
    Wang Y, Zhu Y, Zhou Z et al (2016) Pyrolysis study on solid fuels: from conventional analytical methods to synchrotron vacuum ultraviolet photoionization mass spectrometry. Energy Fuels 30:1534–1543CrossRefGoogle Scholar
  39. 39.
    Zhu Y, Chen X, Wang Y et al (2015) Online study on the catalytic pyrolysis of bituminous coal over HUSY and HZSM-5 with photoionization time-of-flight mass spectrometry. Energy Fuels 30:1598–1604CrossRefGoogle Scholar
  40. 40.
    Fujimoto K-I, Ribeiro FH, Avalos-Borja M, Iglesia E (1998) Structure and reactivity of PdOx/ZrO2 catalysts for methane oxidation at low temperatures. J Catal 179:431–442. CrossRefGoogle Scholar
  41. 41.
    Pi D, Li WZ, Lin QZ et al (2016) Highly active and thermally stable supported Pd@SiO2 core-shell catalyst for catalytic methane combustion. Energy Technol 4:943–949. CrossRefGoogle Scholar
  42. 42.
    Bitter JH, Seshan K, Lercher JA (2000) On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming. Top Catal 10:295–305CrossRefGoogle Scholar
  43. 43.
    Sekizawa K, Widjaja H, Maeda S et al (2000) Low temperature oxidation of methane over Pd/SnO2 catalyst. Appl Catal A 200:211–217. CrossRefGoogle Scholar
  44. 44.
    Yamamoto H, Uchida H (1998) Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal Today 45:147–151. CrossRefGoogle Scholar
  45. 45.
    Piqueras C, Bottini S, Damiani D (2006) Sunflower oil hydrogenation on Pd/Al2O3 catalysts in single-phase conditions using supercritical propane. Appl Catal A 313:177–188. CrossRefGoogle Scholar
  46. 46.
    Anderson JR (1975) Structure of metallic catalysts. Academic Press, New YorkGoogle Scholar
  47. 47.
    Liang D, Gao J, Wang J et al (2009) Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catal Commun 10:1586–1590. CrossRefGoogle Scholar
  48. 48.
    Lambert S, Job N, D’Souza L et al (2009) Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method. J Catal 261:23–33. CrossRefGoogle Scholar
  49. 49.
    Yuranov I, Moeckli P, Suvorova E et al (2003) Pd/SiO2 catalysts: synthesis of Pd nanoparticles with the controlled size in mesoporous silicas. J Mol Catal A 192:239–251. CrossRefGoogle Scholar
  50. 50.
    Hoffmann M, Kreft S, Georgi G et al (2015) Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration. Appl Catal B 179:313–320CrossRefGoogle Scholar
  51. 51.
    Schwartz WR, Ciuparu D, Pfefferle LD (2012) Combustion of methane over palladium-based catalysts: catalytic deactivation and role of the support. J Phys Chem C 116:8587–8593. CrossRefGoogle Scholar
  52. 52.
    Xu W, Liu X, Ren J et al (2010) A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal Commun 11:721–726. CrossRefGoogle Scholar
  53. 53.
    Liotta LF, Di Carlo G, Pantaleo G et al (2007) Pd/Co3O4 catalyst for CH4 emissions abatement: study of SO2 poisoning effect. Top Catal 42:425–428. CrossRefGoogle Scholar
  54. 54.
    Gou Y, Liang X, Chen B (2013) Porous Ni–Co bimetal oxides nanosheets and catalytic properties for CO oxidation. J Alloys Compd 574:181–187. CrossRefGoogle Scholar
  55. 55.
    Trivedi S, Prasad R (2017) Selection of cobaltite and effect of preparation method of NiCo2O4 for catalytic oxidation of CO–CH4 mixture. Asia-Pacific J Chem Eng 12:440–453. CrossRefGoogle Scholar
  56. 56.
    Luo MF, Hou ZY, Yuan XX, Zheng XM (1998) Characterization study of CeO2 supported Pd catalyst for low-temperature carbon monoxide oxidation. Catal Lett 50:205–209. CrossRefGoogle Scholar
  57. 57.
    Klissurski D, Uzunova E (1991) Synthesis of nickel cobaltite spinel from coprecipitated nickel-cobalt hydroxide carbonate. Chem Mater 3:1060–1063CrossRefGoogle Scholar
  58. 58.
    Marco JF, Gancedo JR, Gracia M et al (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11:3087–3093CrossRefGoogle Scholar
  59. 59.
    Ciuparu D, Bozon-Verduraz F, Pfefferle L (2002) Oxygen exchange between palladium and oxide supports in combustion catalysts. J Phys Chem B 106:3434–3442. CrossRefGoogle Scholar
  60. 60.
    Liang J, Fan Z, Chen S et al (2014) Hierarchical NiCO2O4nanosheets@halloysite nanotubes with ultrahigh capacitance and long cycle stability as electrochemical pseudocapacitor materials. Chem Mater 26:4354–4360. CrossRefGoogle Scholar
  61. 61.
    Zhang S, Shan J, Nie L et al (2016) In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane. Surf Sci 648:156–162. CrossRefGoogle Scholar
  62. 62.
    Luciu I, Bartali R, Laidani N (2012) Influence of hydrogen addition to an Ar plasma on the structural properties of TiO2–x thin films deposited by RF sputtering. J Phys D 45:345302CrossRefGoogle Scholar
  63. 63.
    Chin Y-H, Buda C, Neurock M, Iglesia E (2013) Consequences of metal–oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J Am Chem Soc 135:15425–15442CrossRefPubMedGoogle Scholar
  64. 64.
    Mudiyanselage K, Senanayake SD, Feria L et al (2013) Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Qifu Huang
    • 1
  • Wenzhi Li
    • 1
  • Yanyan Lei
    • 1
  • Shengnan Guan
    • 1
  • Xusheng Zheng
    • 2
  • Yang Pan
    • 2
  • Wu Wen
    • 2
  • Junfa Zhu
    • 2
  • Haitao Zhang
    • 1
  • Qizhao Lin
    • 1
  1. 1.Department of Thermal Science and Energy EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations