Advertisement

One-Pot Synthesized BiOI/TiO2 Heterostructure with Enhanced Photocatalytic Performance and Photocatalytic Treatment of Gas-Phase Hg0

  • Jiang Wu
  • Jinjing Zhang
  • Weixing Xu
  • Chenhao Qu
  • Yu Guan
  • Xuemei Qi
  • Yang Ling
  • Xiao Zhou
  • Kai Xu
  • Liangjun Zhu
Article
  • 12 Downloads

Abstract

In this study, a series of BiOI/TiO2 heterostructure photocatalysts were prepared by a facile one-pot hydrothermal method. All samples were characterized by XRD, TEM and other techniques. The results showed that the heterostructures between BiOI and TiO2 were formed successfully. The photoactivities of the samples were tested by catalytic oxidation of Hg0 and BT-4 showed the highest removal efficiency, reaching up to 82.5%. Moreover, the trapping experiments indicated that ·O2− and h+ were the main reactive components for Hg0 removal. Finally, a possible mechanism was proposed: A Z-scheme electron/hole transport mechanism was the main reason for the enhanced photoactivity.

Graphical Abstract

Keywords

Hydrothermal Heterostructure Photocatalytic Hg0 Main reactive species 

Notes

Acknowledgements

This work was partially sponsored by National Natural Science Foundation of China (21237003, 50806041, 51106133, 51606115), Shanghai Science and Technology Development (15110501000), Natural Science Foundation of Shanghai (16ZR1413500).

References

  1. 1.
    Li Y, Zhang J, Zhao Y, Zheng C (2011) Energy Fuels 25:3988–3996CrossRefGoogle Scholar
  2. 2.
    Pacyna EG, Pacyna JM, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P (2010) Atmos Environ 44:2487–2499CrossRefGoogle Scholar
  3. 3.
    Li H, Wu S, Wu CY, Wang J, Li L, Shih K (2015) Environ Sci Technol 49:7373CrossRefGoogle Scholar
  4. 4.
    Gao Y, Zhang Z, Wu J, Duan L, Umar A, Sun L, Guo Z, Wang Q (2013) Environ Sci Technol 47:10813–10823CrossRefGoogle Scholar
  5. 5.
    Wu J, Li C, Zhao X, Wu Q, Qi X, Chen X, Hu T, Cao Y (2015) Appl Catal B 176–177:559–569CrossRefGoogle Scholar
  6. 6.
    Shen H, Ie IR, Yuan CS, Hung CH (2016) Appl Catal B 195:90–103CrossRefGoogle Scholar
  7. 7.
    Pan X, Chen X, Yi Z (2016) ACS Appl Mater Interface 8:10104CrossRefGoogle Scholar
  8. 8.
    Li K, Gao SM, Wang QY, Xu H, Wang ZY, Huang BB, Dai Y, Lu J (2015) ACS Appl Mater Interface 7:9023CrossRefGoogle Scholar
  9. 9.
    Li J, Zhong J, Si Y, Huang S, Dou L, Li M, Liu Y, Ding J (2016) Solid State Sci 52:106–111CrossRefGoogle Scholar
  10. 10.
    Yang J, Xu L, Liu C, Xie T (2014) Appl Surf Sci 319:265–271CrossRefGoogle Scholar
  11. 11.
    He RA, Cao S, Zhou P, Yu J (2014) Chin J Catal 35:989–1007CrossRefGoogle Scholar
  12. 12.
    Lin X, Yu L, Yan L, Li H, Yan Y, Liu C, Zhai H (2014) Solid State Sci 32:61–66CrossRefGoogle Scholar
  13. 13.
    Liao C, Ma Z, Dong G, Qiu J (2014) Appl Surf Sci 314:481–489CrossRefGoogle Scholar
  14. 14.
    Wu D, Wang H, Li C, Xia J, Song X, Huang W (2014) Surf Coat Technol 258:672–676CrossRefGoogle Scholar
  15. 15.
    Dai G, Yu J, Liu G (2011) J Phys Chem C 115:7339–7346CrossRefGoogle Scholar
  16. 16.
    Teng Q, Zhou X, Jin B, Luo J, Xu XY, Guan HJ, Wang W, Yang F (2016) RSC Adv 6:36881–36887CrossRefGoogle Scholar
  17. 17.
    Chai B, Wang X (2015) RSC Adv 5:7589–7596CrossRefGoogle Scholar
  18. 18.
    Hao R, Wang G, Jiang C, Tang H, Xu Q (2017) Appl Surf Sci 411:400–410CrossRefGoogle Scholar
  19. 19.
    Zhang G, Ji S, Zhang Y, Wei Y (2017) Solid State Commun 259:34–39CrossRefGoogle Scholar
  20. 20.
    Luo S, Tang C, Huang Z, Liu C, Chen J, Fang MH (2016) Ceram Int 42:15780–15786CrossRefGoogle Scholar
  21. 21.
    Zhang X, Zhang L, Xie T, Wang D (2009) J Phys Chem C 113:7371–7378CrossRefGoogle Scholar
  22. 22.
    Sun M, Yan Q, Shao Y, Wang C, Yan T, Ji P, Du B (2017) Appl Surf Sci 416:288–295CrossRefGoogle Scholar
  23. 23.
    Jo WK, Natarajan TS (2015) Chem Eng J 281:549–565CrossRefGoogle Scholar
  24. 24.
    Li FT, Wang Q, Ran J, Hao YJ, Wang XJ, Zhao D, Qiao SZ (2015) Nanoscale 7:1116CrossRefGoogle Scholar
  25. 25.
    Zhu YP, Ren TZ, Yuan ZY (2015) ACS Appl Mater Interface 7:16850CrossRefGoogle Scholar
  26. 26.
    Wu J, Chen XT, Li C, Qi Y, Qi X, Ren J, Yuan B, Ni B, Zhou R, Zhang J (2016) Chem Eng J 304:533–543CrossRefGoogle Scholar
  27. 27.
    Li P, Zhao X, Jia CJ, Sun H, Sun L, Cheng X, Liu L, Fan W(2013) J Mater Chem 1:3421–3429CrossRefGoogle Scholar
  28. 28.
    Chai B, Xu Q, Li J, Dai K (2014) Sci Adv Mater 6:1806–1813CrossRefGoogle Scholar
  29. 29.
    Cao J, Li X, Lin H, Chen S, Fu X (2012) J Hazard Mater 239–240:316CrossRefGoogle Scholar
  30. 30.
    Liang N, Wang M, Jin L, Huang S, Chen W, Xu M, He Q, Zai J, Fang N, Qian X (2014) Biochim Biophys Acta 1702:137–143Google Scholar
  31. 31.
    Xiong T, Wen M, Dong F, Yu J, Han L, Lei B, Zhang Y, Tang X, Zang Z (2016) Appl Catal B 199:87–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jiang Wu
    • 1
  • Jinjing Zhang
    • 1
  • Weixing Xu
    • 2
  • Chenhao Qu
    • 1
  • Yu Guan
    • 1
  • Xuemei Qi
    • 1
  • Yang Ling
    • 1
  • Xiao Zhou
    • 1
  • Kai Xu
    • 1
  • Liangjun Zhu
    • 1
  1. 1.College of Energy and Mechanical EngineeringShanghai University of Electric PowerShanghaiPeople’s Republic of China
  2. 2.Shanghai Huangpu Second Dental ClinicShanghaiPeople’s Republic of China

Personalised recommendations