Catalysis Letters

, Volume 148, Issue 7, pp 2179–2189 | Cite as

Enhanced Photocatalytic Performance of Hierarchical ZnFe2O4/g-C3N4 Heterojunction Composite Microspheres

  • Yuehan Wu
  • Yu Wang
  • Andi Di
  • Xu Yang
  • Gang Chen


Semiconductor photocatalysts with suitable band gap for fair response to visible light and efficient separation of electron–hole pairs, are the key to practical application of photocatalytic technology. Magnetically separable hierarchical ZnFe2O4/g-C3N4 composite photocatalysts were prepared by a facile solvothermal method combined with a subsequent annealing process. The composite microspheres were composed of ZnFe2O4 nanoparticles, whose diameter was restricted due to the confined space effect from g-C3N4 nanosheets. ZnFe2O4/g-C3N4 heterojunction structures led to the improvement of the efficiency for photodegrading methylene blue and rhodamine B under visible light, where the kinetic constant over ZnFe2O4/CN-150 photocatalyst was more than ten times larger than that over pure ZnFe2O4. The photogenerated electrons from g-C3N4 surfaces could easily migrate to ZnFe2O4, leading to efficient separation of electron–hole pairs. Also, the composite photocatalyst possessed a chemical stability against photocorrosion and a magnetic property, which made it magnetically separable and reusable conveniently.

Graphical Abstract


ZnFe2O4 g-C3N4 Composite photocatalyst Hierarchical structures Heterojunction structures 



This work was financially supported by projects of National Natural Science Foundation of China (21403046).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2018_2376_MOESM1_ESM.docx (7 mb)
Supplementary material 1 (DOCX 7173 KB)


  1. 1.
    Li X, Yu J, Jaroniec M (2016) Hierarchical photocatalysts. Chem Soc Rev 45(9):2603–2636CrossRefPubMedGoogle Scholar
  2. 2.
    Dong H, Zeng G, Tang L, Fan C, Zhang C, He X et al (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146CrossRefPubMedGoogle Scholar
  3. 3.
    Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219CrossRefGoogle Scholar
  4. 4.
    Vaiano V, Sacco O, Sannino D, Ciambelli P (2015) Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chem Eng J 261:3–8CrossRefGoogle Scholar
  5. 5.
    Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G et al (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174CrossRefPubMedGoogle Scholar
  6. 6.
    Tang L, Wang J, Zeng G, Liu Y, Deng Y, Zhou Y et al (2016) Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J Hazard Mater 306:295–304CrossRefPubMedGoogle Scholar
  7. 7.
    Wang H, Yuan X, Wu Y, Zeng G, Chen X, Leng L et al (2015) Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B 174–175:445–454CrossRefGoogle Scholar
  8. 8.
    Liang Z, Wen Q, Wang X, Zhang F, Yu Y (2016) Chemically stable and reusable nano zero-valent iron/graphite-like carbon nitride nanohybrid for efficient photocatalytic treatment of Cr(VI) and rhodamine B under visible light. Appl Surf Sci 386:451–459CrossRefGoogle Scholar
  9. 9.
    Marinho BA, Cristóvão RO, Djellabi R, Loureiro JM, Boaventura RAR, Vilar VJP (2017) Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl Catal B 203:18–30CrossRefGoogle Scholar
  10. 10.
    Di J, Xia J, Ji M, Yin S, Li H, Xu H et al (2015) Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J Mater Chem A 3(29):15108–15118CrossRefGoogle Scholar
  11. 11.
    Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Irastorza EA et al (2012) Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl Catal B 119–120:32–39CrossRefGoogle Scholar
  12. 12.
    Wang C-C, Li J-R, Lv X-L, Zhang Y-Q, Guo G (2014) Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ Sci 7(9):2831CrossRefGoogle Scholar
  13. 13.
    Li Y, Hou Y, Fu Q, Peng S, Hu YH (2017) Oriented growth of ZnIn2S4/In(OH)3 heterojunction by a facile hydrothermal transformation for efficient photocatalytic H2 production. Appl Catal B 206:726–733CrossRefGoogle Scholar
  14. 14.
    Jin X, Ye L, Xie H, Chen G (2017) Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord Chem Rev 349:84–101CrossRefGoogle Scholar
  15. 15.
    Sun L, Shao R, Tang L, Chen Z (2013) Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation. J Alloys Compd 564:55–62CrossRefGoogle Scholar
  16. 16.
    Wu S, Shen X, Zhu G, Zhou H, Ji Z, Chen K et al (2016) Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity. Appl Catal B 184:328–336CrossRefGoogle Scholar
  17. 17.
    Wang M, Sun L, Cai J, Huang P, Su Y, Lin C (2013) A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. J Mater Chem A 1(39):12082CrossRefGoogle Scholar
  18. 18.
    Yao Y, Qin J, Chen H, Wei F, Liu X, Wang J et al (2015) One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. J Hazard Mater 291:28–37CrossRefPubMedGoogle Scholar
  19. 19.
    Chen X, Dai Y, Liu T, Guo J, Wang X, Li F (2015) Magnetic core–shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation. J Mol Catal A 409:198–206CrossRefGoogle Scholar
  20. 20.
    Kong L, Jiang Z, Xiao T, Lu L, Jones MO, Edwards PP (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chem Commun 47(19):5512CrossRefGoogle Scholar
  21. 21.
    Yu TH, Cheng WY, Chao KJ, Lu SY (2013) ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale 5(16):7356–7360CrossRefPubMedGoogle Scholar
  22. 22.
    Niu P, Zhang LL, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22(22):4763–4770CrossRefGoogle Scholar
  23. 23.
    Xu J, Li Y, Peng S, Lu G, Li S (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15(20):7657–7665CrossRefPubMedGoogle Scholar
  24. 24.
    He F, Chen G, Yu Y, Hao S, Zhou Y, Zheng Y (2014) Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity. ACS Appl Mater Interfaces 6(10):7171–7179CrossRefPubMedGoogle Scholar
  25. 25.
    Lu Z, Zeng L, Song W, Qin Z, Zeng D, Xie C (2017) In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl Catal B 202:489–499CrossRefGoogle Scholar
  26. 26.
    Xu H, Yan J, Xu Y, Song Y, Li H, Xia J et al (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B 129:182–193CrossRefGoogle Scholar
  27. 27.
    Li M, Zhang L, Fan X, Zhou Y, Wu M, Shi J (2015) Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light. J Mater Chem A 3(9):5189–5196CrossRefGoogle Scholar
  28. 28.
    Miao G, Huang D, Ren X, Li X, Li Z, Xiao J (2016) Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions. Appl Catal B 192:72–79CrossRefGoogle Scholar
  29. 29.
    He F, Chen G, Miao J, Wang Z, Su D, Liu S et al (2016) Sulfur-mediated self-templating synthesis of tapered C-PAN/g-C3N4 composite nanotubes toward efficient photocatalytic H2 evolution. ACS Energy Lett 1(5):969–975CrossRefGoogle Scholar
  30. 30.
    Zhang J, Wang Y, Jin J, Zhang J, Lin Z, Huang F et al (2013) Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires. ACS Appl Mater Interfaces 5(20):10317–10324CrossRefPubMedGoogle Scholar
  31. 31.
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234–5244CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W et al (2013) In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl Mater Interfaces 5(23):12735–12743CrossRefPubMedGoogle Scholar
  33. 33.
    Yao Y, Cai Y, Lu F, Qin J, Wei F, Xu C et al (2014) Magnetic ZnFe2O4–C3N4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Ind Eng Chem Res 53(44):17294–17302CrossRefGoogle Scholar
  34. 34.
    Chen J, Shen SH, Guo PH, Wu P, Guo LJ (2014) Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. J Mater Chem A 2(13):4605–4612CrossRefGoogle Scholar
  35. 35.
    Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21CrossRefPubMedGoogle Scholar
  36. 36.
    Lin Q, Li L, Liang S, Liu M, Bi J, Wu L (2015) Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl Catal B 163:135–142CrossRefGoogle Scholar
  37. 37.
    Zhang C, Chen G, Li C, Sun J, Lv C, Fan S et al (2016) In situ fabrication of Bi2WO6/MoS2/RGO heterojunction with nanosized interfacial contact via confined space effect toward enhanced photocatalytic properties. ACS Sustain Chem Eng 4(11):5936–5942CrossRefGoogle Scholar
  38. 38.
    Wang W, Liu Y, Qu J, Chen Y, Tadé MO, Shao Z (2017) Synthesis of hierarchical TiO2-C3N4 hybrid microspheres with enhanced photocatalytic and photovoltaic activities by maximizing the synergistic effect. ChemPhotoChem 1(1):35–45CrossRefGoogle Scholar
  39. 39.
    Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398CrossRefGoogle Scholar
  40. 40.
    Zhou X, Li X, Sun H, Sun P, Liang X, Liu F et al (2015) Nanosheet-assembled ZnFe2O4 hollow microspheres for high-sensitive acetone sensor. ACS Appl Mater Interfaces 7(28):15414–15421CrossRefPubMedGoogle Scholar
  41. 41.
    Wang F, Wen Z, Shen C, Rui K, Wu X, Chen C (2015) Open mesoporous spherical shell structured Co3O4 with highly efficient catalytic performance in Li–O2 batteries. J Mater Chem A 3(14):7600–7606CrossRefGoogle Scholar
  42. 42.
    Li J, Wang J, Wexler D, Shi D, Liang J, Liu H et al (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1(48):15292CrossRefGoogle Scholar
  43. 43.
    Di J, Xia J, Ji M, Wang B, Yin S, Zhang Q et al (2015) Carbon quantum dots modified BiOCl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight. ACS Appl Mater Interfaces 7(36):20111–20123CrossRefPubMedGoogle Scholar
  44. 44.
    Li T, Zhao L, He Y, Cai J, Luo M, Lin J (2013) Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation. Appl Catal B 129:255–263CrossRefGoogle Scholar
  45. 45.
    Peeters D, Taffa DH, Kerrigan MM, Ney A, Jöns N, Rogalla D et al (2017) Photoactive zinc ferrites fabricated via conventional CVD approach. ACS Sustain Chem Eng 5(4):2917–2926CrossRefGoogle Scholar
  46. 46.
    Meidanchi A, Akhavan O, Khoei S, Shokri AA, Hajikarimi Z, Khansari N (2015) ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater Sci Eng C 46:394–399CrossRefGoogle Scholar
  47. 47.
    Teh PF, Sharma Y, Pramana SS, Srinivasan M (2011) Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J Mater Chem 21(38):14999CrossRefGoogle Scholar
  48. 48.
    Hong J, Xia X, Wang Y, Xu R (2012) Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 22(30):15006CrossRefGoogle Scholar
  49. 49.
    Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ et al (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132(33):11642–11648CrossRefPubMedGoogle Scholar
  50. 50.
    Baciocchi E, Del Giacco T, Elisei F, Gerini MF, Guerra M, Lapi A et al (2003) Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations. J Am Chem Soc 125(52):16444–16454CrossRefPubMedGoogle Scholar
  51. 51.
    Hufnagel AG, Peters K, Müller A, Scheu C, Fattakhova-Rohlfing D, Bein T (2016) Zinc ferrite photoanode nanomorphologies with favorable kinetics for water-splitting. Adv Funct Mater 26(25):4435–4443CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Department of ChemistryUniversity of BathBathUK

Personalised recommendations