Catalysis Letters

, Volume 148, Issue 6, pp 1739–1749 | Cite as

Highly Dispersed Surfactant-Free Amorphous NiCoB Nanoparticles and Their Remarkable Catalytic Activity for Hydrogen Generation from Ammonia Borane Dehydrogenation

  • Hongli Wang
  • Dawei Gao
  • Liying Wang
  • Yue Chi
  • Minggang Wang
  • Yan Gu
  • Cong Wang
  • Zhankui Zhao


The effective storage and generation of hydrogen at room temperature is an important issue in many areas, including alternative energy. In this work, NiCoB nanoalloys with high B contents, clean surfaces, and good dispersions are synthesized by an in-situ reduction method. The NiCoB catalyst with high B content exhibits significantly more excellent catalytic activity for hydrogen generation from the hydrolytic of ammonia borane than NiCoB catalyst with low B content. The remarkable catalytic performance is attributed to the strong electronic interaction between the incorporated B and the active metal sites of Co and Ni, the clean surface and good dispersion of the catalyst. Basically, the physical and catalytic properties of the catalyst take advantage of the selection of reductant used during the in-situ synthesis of the NiCoB nanoalloys. This work demonstrates that this facile synthetic method is a promising avenue for the rational design of various B incorporated metal catalysts for hydrogen energy exploitation, metal/air batteries, and electrochemical sensors.

Graphical Abstract


B incorporated nickel–cobalt alloy In-situ reduction Heterogeneous catalysis Hydrogen generation Ammonia borane 



This work was supported by National Natural Science Foundation of China (51601018, 51608050, 51671035, 51605042); Jilin Province Science and Technology Development Project (20170520122JH, 20150520020JH); and Science and Technology Research Project of the Education Department of Jilin Province (JJKH20170549KJ, 2016327).


  1. 1.
    Schultz MG, Diehl T, Brasseur GP, Zittel W (2003) Science 302:624–627CrossRefGoogle Scholar
  2. 2.
    Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q (2013) Angew Chem Int Ed 52:4406–4409CrossRefGoogle Scholar
  3. 3.
    Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) Nat Mater 7:138–141CrossRefGoogle Scholar
  4. 4.
    Yadav M, Xu Q (2012) Energy Environ Sci 5:9698–9725CrossRefGoogle Scholar
  5. 5.
    Mori K, Tanaka H, Dojo M, Yoshizawa K, Yamashita H (2015) Chem Eur J 21:12085–12092CrossRefGoogle Scholar
  6. 6.
    Kim SK, Han WS, Kim TJ, Kim TY, Nam SW, Mitoraj M, Piekoś Ł, Michalak A, Hwang SJ, Kang SO (2010) J Am Chem Soc 132:9954–9955CrossRefGoogle Scholar
  7. 7.
    Yang L, Luo W, Cheng GZ (2013) Catal Lett 143:873–880CrossRefGoogle Scholar
  8. 8.
    Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293CrossRefGoogle Scholar
  9. 9.
    Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) Adv Mater 27:4616–4621CrossRefGoogle Scholar
  10. 10.
    Yao Q, Lu Z, Huang W, Chen X, Zhu J (2016) J Mater Chem A 4:8579–8583CrossRefGoogle Scholar
  11. 11.
    Sun D, Mazumder V, Metin Ö, Sun S (2012) ACS Catal 2:1290–1295CrossRefGoogle Scholar
  12. 12.
    Kim SK, Kim TJ, Kim TY, Lee G, Park JT, Nam SW, Kang SO (2012) Chem Commun 48:2021–2023CrossRefGoogle Scholar
  13. 13.
    Shrestha RP, Diyabalanage HVK, Semelsberger TA, Ott KC, Burrell AK (2009) Int J Hydrogen Energy 34:2616–2621CrossRefGoogle Scholar
  14. 14.
    Zhang J, Chen C, Chen S, Hu Q, Gao Z, Li Y, Qin Y (2017) Catal Sci Technol 7:322–329CrossRefGoogle Scholar
  15. 15.
    Akbayrak S, Őzkar S (2012) ACS Appl Mater Interfaces 4:6302–6310CrossRefGoogle Scholar
  16. 16.
    Akbayrak S, Erdek P, Őzkar S (2013) Appl Catal B 142–143:187–195CrossRefGoogle Scholar
  17. 17.
    Shang NZ, Feng C, Gao ST, Wang C (2016) Int J Hydrogen Energy 41:944–950CrossRefGoogle Scholar
  18. 18.
    Cao N, Luo W, Cheng G (2013) Int J Hydrogen Energy 38:11964–11972CrossRefGoogle Scholar
  19. 19.
    Yan JM, Zhang XB, Han S, Shioyama H, Xu Q (2008) Angew Chem 120:2319–2321CrossRefGoogle Scholar
  20. 20.
    Wang HL, Yan JM, Wang ZL, Jiang Q (2012) Int J Hydrogen Energy 37:10229–10235CrossRefGoogle Scholar
  21. 21.
    Nabid MR, Bide Y, Dastar F (2015) Catal Lett 145:1798–1807CrossRefGoogle Scholar
  22. 22.
    Jiang HL, Akita T, Xu Q (2011) Chem Commun 47:10999–11001CrossRefGoogle Scholar
  23. 23.
    Qiu F, Li L, Liu G, Wang Y, Wang Y, An C, Xu Y, Xu C, Wang Y, Jiao L, Yuan H (2013) Int J Hydrogen Energy 38:3241–3249CrossRefGoogle Scholar
  24. 24.
    Rakap M, Kalu EE, Özkar S (2012) J Power Sources 210:184–190CrossRefGoogle Scholar
  25. 25.
    Zou Y, Cheng J, Wang Q, Xiang C, Chu H, Qiu S, Zhang H, Xu F, Liu S, Tang C, Sun L (2015) Int J Hydrogen Energy 40:13423–13430CrossRefGoogle Scholar
  26. 26.
    Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  27. 27.
    Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao F (2012) Chem Soc Rev 41:8140–8162CrossRefGoogle Scholar
  28. 28.
    Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Chem Rev 113:7981–8065CrossRefGoogle Scholar
  29. 29.
    Greenwood N, Parish R, Thornton P (1966) Q Rev 20:441–464CrossRefGoogle Scholar
  30. 30.
    He D, Zhang L, He D, Zhou G, Lin Y, Deng Z, Hong X, Wu Y, Chen C, Li Y (2016) Nat Commun 7:12362CrossRefGoogle Scholar
  31. 31.
    Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:4516–4520CrossRefGoogle Scholar
  32. 32.
    Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J, Miyata S (2010) J Phys Chem C 114:8933–8937CrossRefGoogle Scholar
  33. 33.
    Wang J, Li W, Wen Y, Gu L, Zhang Y (2015) Adv Energy Mater 5:1401879CrossRefGoogle Scholar
  34. 34.
    Jiang K, Xu K, Zou S, Cai WB (2014) J Am Chem Soc 136:4861–4864CrossRefGoogle Scholar
  35. 35.
    Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q (2012) Sci Rep 2:598CrossRefGoogle Scholar
  36. 36.
    Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357CrossRefGoogle Scholar
  37. 37.
    Mazumder V, Sun S (2009) J Am Chem Soc 131:4588–4589CrossRefGoogle Scholar
  38. 38.
    Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) J Am Chem Soc 133:3693–3695CrossRefGoogle Scholar
  39. 39.
    Yan JM, Zhang XB, Han S, Shioyama H, Xu Q (2009) Inorg Chem 48:7389–7393CrossRefGoogle Scholar
  40. 40.
    Patel N, Fernandes R, Gupta S, Edla R, Kothari DC, Miotello A (2013) Appl Catal B 140–141:125–132CrossRefGoogle Scholar
  41. 41.
    Wang Y, Cheng R, Wen Z, Zhao L (2012) Chem Eng J 181–182:823–827CrossRefGoogle Scholar
  42. 42.
    Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) J Am Chem Soc 132:5326–5327CrossRefGoogle Scholar
  43. 43.
    Cao H, Suib SL (1994) J Am Chem Soc 116:5334–5342CrossRefGoogle Scholar
  44. 44.
    Deng JF, Li HX, Wang WJ (1999) Catal Today 51:113–125CrossRefGoogle Scholar
  45. 45.
    Wang HX, Zhou LM, Han M, Tao ZL, Cheng FY, Chen J (2015) J Alloy Compd 651:382–388CrossRefGoogle Scholar
  46. 46.
    Qiu FY, Dai YL, Li L, Xu CC, Huang YN, Chen CC, Wang YJ, Jiao LF, Yuan HT (2014) Int J Hydrogen Energy 39:436–441CrossRefGoogle Scholar
  47. 47.
    Zhang H, Wang XF, Chen CC, An CH, Xu YA, Huang YA, Zhang QY, Wang YJ, Jiao LF, Yuan HT (2015) Int J Hydrogen Energy 40:12253–12261CrossRefGoogle Scholar
  48. 48.
    Meng XY, Yang L, Cao N, Du C, Hu K, Su J, Luo W, Cheng GZ (2014) ChemPlusChem 79:325–332CrossRefGoogle Scholar
  49. 49.
    Li J, Zhu QL, Xu Q (2015) Catal Sci Technol 5:525–530CrossRefGoogle Scholar
  50. 50.
    Gao DD, Zhang YH, Zhou LQ, Yang KZ (2018) Appl Surf Sci 427:114–122CrossRefGoogle Scholar
  51. 51.
    Liu Y, Zhang J, Guan HJ, Zhao YF, Yang JH, Zhang B (2018) Appl Surf Sci 427:106–113CrossRefGoogle Scholar
  52. 52.
    Liu PL, Gu XJ, Kang K, Zhang H, Cheng J, Su HQ (2017) ACS Appl Mater Interfaces 9(12):10759–10767CrossRefGoogle Scholar
  53. 53.
    Bulut A, Yurderi M, Ertas İE, Celebi M, Kaya M, Zahmakiran M (2016) Appl Catal B 180:121–129CrossRefGoogle Scholar
  54. 54.
    Zhang H, Gu X, Liu P, Song J, Cheng J, Su H (2017) J Mater Chem A 5:2288–2296CrossRefGoogle Scholar
  55. 55.
    Xia BQ, Liu C, Wu H, Luo W, Cheng GZ (2015) Int J Hydrogen Energy 40:16391–16397CrossRefGoogle Scholar
  56. 56.
    Zahmakiran M, Özkar S (2009) Langmuir 25:2667–2678CrossRefGoogle Scholar
  57. 57.
    Jiang HL, Xu Q (2011) J Mater Chem 21:13705–13725CrossRefGoogle Scholar
  58. 58.
    He L, Huang Y, Wang A, Wang X, Chen X, Delgado JJ, Zhang T (2012) Angew Chem Int Ed 51:6191–6195CrossRefGoogle Scholar
  59. 59.
    Tong DG, Tang DM, Chu W, Gu GF, Wu P (2013) J Mater Chem A 1:6425–6432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Structural Materials, Ministry of Education, College of Material Science and EngineeringChangchun University of TechnologyChangchunChina
  2. 2.Chongqing Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technologies (EBEAM)Yangtze Normal UniversityChongqingChina

Personalised recommendations