Catalysis Letters

, Volume 148, Issue 6, pp 1731–1738 | Cite as

Continuous Synthesis of Fuel Additives Alkyl Levulinates via Alcoholysis of Furfuryl Alcohol over Silica Supported Metal Oxides

  • Raji Reddy Chada
  • Kumara Swamy Koppadi
  • Siva Sankar Enumula
  • Murali Kondeboina
  • Seetha Rama Rao Kamaraju
  • David Raju Burri


Aiming at synthesizing alkyl levulinates via alcoholysis of furfuryl alcohol in continuous mode for the first time an attempt is made using cheapest and eco-friendly solid acid catalysts. Different silica supported solid acid catalysts containing the oxides of aluminium, tungsten, zirconium and titanium have been prepared. The nature, number and strength of surface acidic sites were evaluated by DRIFT spectroscopy with pyridine adsorption and NH3-TPD and also structural and textural features of the catalysts have been investigated by XRD and BET surface area techniques. Al2O3/SiO2 catalyst exhibited better activity with 100% conversion of furfuryl alcohol and 92.8% selectivity of methyl levulinate, which may be due to more number of surface acidic sites with large number of weak Lewis acidic sites. The catalytic activity of these solid acid catalysts is as follows: Al2O3/SiO2 > ZrO2/SiO2 > WO3/SiO2 > TiO2/SiO2. This is well correlated with the number of surface acidic sites. The stable catalytic activity during the 10 h time-on-stream study confirmed the sturdiness of Al2O3/SiO2 catalyst and also it is active for the selective formation of ethyl, n-propyl, n-butyl levulinates.

Graphical Abstract


Furfuryl alcohol Alkyl levulinate Alcoholysis Al2O3/SiO2 



The authors C.R.R, K.K.S, E.S.S and K.M gratefully thank University Grant Commission, New Delhi, for financial support.


  1. 1.
    Ahmad E, Alam MI, Pant KK, Haider MA (2016) Green Chem 18:4804CrossRefGoogle Scholar
  2. 2.
    Sankar ES, Babu GVR, Reddy CR, Raju BD, Rama Rao KS (2017) J Mol Catal A 426:30CrossRefGoogle Scholar
  3. 3.
    Climent MJ, Corma A, Iborra S (2014) Green Chem 16:516CrossRefGoogle Scholar
  4. 4.
    Kobayashi H, Fukuoka A (2013) Green Chem 15:1740CrossRefGoogle Scholar
  5. 5.
    Climent MJ, Corma A, Iborra S (2011) Green Chem 13:520CrossRefGoogle Scholar
  6. 6.
    Nagaraja BM, Padmasri AH, David Raju D, Rama Rao KS (2017) J Mol Catal Chem 265:90CrossRefGoogle Scholar
  7. 7.
    Swamy KK, Reddy CR, Sankar ES, Kumar MR, Rama Rao KS, Raju BD (2017) Catal Lett 147:1278CrossRefGoogle Scholar
  8. 8.
    Demolis A, Essayem N, Rataboul F (2014) ACS Sustain Chem Eng 2:1338CrossRefGoogle Scholar
  9. 9.
    Janssen A, Pischinger S, Muether M (2010) SAE Int J Fuels Lubr 3:70CrossRefGoogle Scholar
  10. 10.
    Clark RH, Groves AP, Morley C, Smith J (2004) Fuel compositions. Patent WO2004035713Google Scholar
  11. 11.
    Christensen E, Williams A, Paul S, Burton S, McCormick RL (2011) Energy Fuels 25:5422CrossRefGoogle Scholar
  12. 12.
    Joshi H, Moser BR, Toler J, Smith WF, Walker T (2011) Biomass Bioenergy 35(7):3262CrossRefGoogle Scholar
  13. 13.
    Ferrer NB, Prats LG, Company CE, Boliart JC (2013) European. Patent EP2540871A1Google Scholar
  14. 14.
    Leng Y, Wang J, Zhu DR, Ren XQ, Ge HQ, Shen L (2009) Angew Chem Int Ed 121:174CrossRefGoogle Scholar
  15. 15.
    Lange JP, van de Graaf WD, Haan RJ (2009) ChemSusChem 2:437CrossRefGoogle Scholar
  16. 16.
    Neves P, Antunes MM, Russo PA, Abrantes JP, Lima S, Fernandes A, Pillinger M, Rocha SM, Ribeiro MF, Valente AA (2013) Green Chem 15:3367CrossRefGoogle Scholar
  17. 17.
    Zhao G, Hu L, Sun Y, Zeng X, Lin L (2014) BioResources 9:2634Google Scholar
  18. 18.
    Neves P, Antunes MM, Russo PA, Valente AA (2013) Green Chem 15:3367–3376CrossRefGoogle Scholar
  19. 19.
    Liu RL, Chen JZ, Huang X, Chen LM (2013) Green Chem 15:2895CrossRefGoogle Scholar
  20. 20.
    Wang G, Zhang Z, Song L (2014) Green Chem 16:1436CrossRefGoogle Scholar
  21. 21.
    Car PD, Ciriminna R, Shiju NR, Rothenberg G, Pagliaro M (2014) ChemSusChem 7:835CrossRefGoogle Scholar
  22. 22.
    Lu B, An S, Song D, Su F, Yang X, Guo Y (2015) Green Chem 17:1767CrossRefGoogle Scholar
  23. 23.
    Song D, An S, Sun Y, Guo Y (2016) J Catal 333:184CrossRefGoogle Scholar
  24. 24.
    Rao BS, Kumari PK, Dhanalakshmi D, Lingaiah N (2017) J Mol Catal A 427:80CrossRefGoogle Scholar
  25. 25.
    Neves P, Lima S, Pillinger M, Rocha SM, Rocha J, Valente AA (2013) Catal Today 76:218Google Scholar
  26. 26.
    Rajesh B, Subratanath K (2012) Inorg Chim Acta 384:233CrossRefGoogle Scholar
  27. 27.
    Boreave A, Auroux A, Guimon C (1997) Microporous Mater 11:275CrossRefGoogle Scholar
  28. 28.
    Reddy CR, Thirupathaiah K, Reddy BA, Devi GS, Rao KSR, Raju BD (2017) Mol Catal 438:224CrossRefGoogle Scholar
  29. 29.
    Feng P, Xuchen L, Qingshan Z, Zhimin Z, Yan Y, Tizhuang W, Shiwei C (2015) J Mater Chem A 3:4058.CrossRefGoogle Scholar
  30. 30.
    Mija A, Navard P, Peiti C, Babor D, Guigo N (2010) Eur Polym J 46:1380CrossRefGoogle Scholar
  31. 31.
    Khusnutdinov R, Baiguzina A, Smirnov A, Mukminov R, Dzhemilev U (2007) Russ J Appl Chem 80:1687CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raji Reddy Chada
    • 1
  • Kumara Swamy Koppadi
    • 1
  • Siva Sankar Enumula
    • 1
  • Murali Kondeboina
    • 1
  • Seetha Rama Rao Kamaraju
    • 1
  • David Raju Burri
    • 1
  1. 1.Department of Catalysis and Fine ChemicalsIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations