Skip to main content
Log in

Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The hydrodenitrogenation (HDN) of quinolone (Q) and decahydroquinoline (DHQ) over a Ni2P catalyst prepared by the reduction of a conventional phosphate precursor and a surface nickel phosphosulfide phase (Ni2P–S) obtained by the reduction of Ni2P2S6 were studied. A reaction network of the HDN of Q over Ni2P was proposed. Both the hydrogenation and C–N bond cleavage activities of Ni2P were enhanced after the introduction of sulfur. The surface sulfur species of Ni2P–S changed significantly after the HDN of DHQ. The thiolate or thiol species were detected as the major sulfur-containing species in the surface of the spent Ni2P–S catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Oyama ST, Gott T, Zhao H, Lee YK (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107

    Article  CAS  Google Scholar 

  2. Oyama ST, Clark P, Wang X, Shido T, Iwasawa Y, Hayashi S, Ramallo-Lopez JM, Requejo FG (2002) Structural characterization of tungsten phosphide (WP) hydrotreating catalysts by X-ray absorption spectroscopy and nuclear magnetic resonance spectroscopy. J Phys Chem B 106:1913–1920

    Article  CAS  Google Scholar 

  3. Lee YK, Oyama ST (2017) Sulfur resistant nature of Ni2P catalyst in deep hydrodesulfurization. Appl Catal A 548:103–113

    Article  CAS  Google Scholar 

  4. Wang X, Clark P, Oyama ST (2002) Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal 208:321–331

    Article  CAS  Google Scholar 

  5. Cho A, Kim H, Iino A, Takagaki A, Oyama ST (2014) Kinetic and FTIR studies of 2-methyltetrahydrofuran hydrodeoxygenation on Ni2P/SiO2. J Catal 318:151–161

    Article  CAS  Google Scholar 

  6. Peroni M, Lee I, Huang X, Baráth E, Gutiérrez OY, Lercher JA (2017) Deoxygenation of palmitic acid on unsupported transition-metal phosphides. ACS Catal 7:6331–6341

    Article  CAS  Google Scholar 

  7. Feitosa LF, Berhault G, Laurenti D, Davies TE, Da Silva VT (2016) Synthesis and hydrodeoxygenation activity of Ni2P/C—effect of the palladium salt on lowering the nickel phosphide synthesis temperature. J Catal 340:154–165

    Article  CAS  Google Scholar 

  8. Chen J, Shi H, Li L, Li K (2014) Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Appl Catal B 144:870–884

    Article  CAS  Google Scholar 

  9. Xin H, Guo K, Li D, Yang H, Hu C (2016) Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Appl Catal B 187:375–385

    Article  CAS  Google Scholar 

  10. Carenco S, Leyva-Pérez A, Concepción P, Boissière C, Mézailles N, Sanchez C, Corma A (2012) Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 7:21–28

    Article  CAS  Google Scholar 

  11. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  PubMed  Google Scholar 

  12. Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J Catal 207:266–273

    Article  CAS  Google Scholar 

  13. Rodriguez JA, Kim J-Y, Jonathan H, Sawhill C, Stephanie J, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285

    Article  CAS  Google Scholar 

  14. Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215:208–219

    Article  CAS  Google Scholar 

  15. Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C (2004) Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni–Mo–P catalysts. J Catal 228:298–310

    Article  CAS  Google Scholar 

  16. Wu Z, Sun F, Wu W, Feng Z, Liang C, Wei Z, Li C (2004) On the surface sites of MoP/SiO2 catalyst under sulfiding conditions: IR spectroscopy and catalytic reactivity studies. J Catal 222:41–52

    Article  CAS  Google Scholar 

  17. Bai J, Li X, Wang A, Prins R, Wang Y (2012) Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. J Catal 287:161–169

    Article  CAS  Google Scholar 

  18. Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437

    Article  CAS  Google Scholar 

  19. Li X, Tian S, Wang A, Prins R, Li C, Chen Y (2017) XPS study of a bulk WP hydrodesulfurization catalyst. J Catal 352:557–561

    Article  CAS  Google Scholar 

  20. Kawai T, Bando K, Lee YK, Oyama ST, Chun W, Asakura K (2006) EXAFS measurements of a working catalyst in the liquid phase: an in situ study of a Ni2P hydrodesulfurization catalyst. J Catal 241:20–24

    Article  CAS  Google Scholar 

  21. Nelson AE, Sun M, Junaid ASM (2006) On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions. J Catal 241:180–188

    Article  CAS  Google Scholar 

  22. Bai J, Li X, Wang A, Prins R, Wang Y (2013) Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. J Catal 300:197–200

    Article  CAS  Google Scholar 

  23. Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436

    Article  CAS  Google Scholar 

  24. Tian S, Li X, Wang A, Prins R, Chen Y, Hu Y (2016) Facile preparation of Ni2P with a sulfur-containing surface layer by low-temperature reduction of Ni2P2S6. Angew Chem Int Ed 55:4030–4034

    Article  CAS  Google Scholar 

  25. Fincher T, LeBret G, Cleary DA (1998) Single-crystal structure determination of Na4P2S6·6H2O. J Solid State Chem 141:274–281

    Article  CAS  Google Scholar 

  26. Wang A, Ruan L, Teng Y, Li X, Lu M, Ren J, Wang Y, Hu Y (2005) Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts. J Catal 229:314–321

    Article  CAS  Google Scholar 

  27. Levenspiel O (1998) Chemical reaction engineering. Wiley, New York

    Google Scholar 

  28. Prins R (2001) Catalytic hydrodenitrogenation. Adv Catal 46:399–464

    CAS  Google Scholar 

  29. Hrabar A, Hein J, Gutiérrez OY, Lercher JA (2011) Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/γ-Al2O3 sulfide catalysts. J Catal 281:325–338

    Article  CAS  Google Scholar 

  30. Gutiérrez OY, Hrabar A, Hein J, Yu Y, Han J, Lercher JA (2012) Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni–MoS2/γ-Al2O3. J Catal 295:155–168

    Article  CAS  Google Scholar 

  31. Jian M, Prins R (1998) Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts. J Catal 179:18–27

    Article  CAS  Google Scholar 

  32. Wang Y, Sun Z, Wang A, Ruan L, Lu M, Ren J, Li X, Li C, Hu Y, Yao P (2004) Kinetics of hydrodesulfurization of dibenzothiophene catalyzed by sulfided Co–Mo/MCM-41. Ind Eng Chem Res 43:2324–2329

    Article  CAS  Google Scholar 

  33. Duan X, Teng Y, Wang A, Kogan VM, Li X, Wang Y (2009) Role of sulfur in hydrotreating catalysis over nickel phosphide. J Catal 261:232–240

    Article  CAS  Google Scholar 

  34. Gao Q, Chen P, Zhang Y, Tang Y (2008) Synthesis and characterization of organic–inorganic hybrid GeOx/ethylenediamine nanowires. Adv Mater 20:1837–1842

    Article  CAS  Google Scholar 

  35. Gammon WJ, Kraft O, Reilly AC, Holloway BC (2003) Experimental comparison of N (1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 41:1917–1923

    Article  CAS  Google Scholar 

  36. Kulkarni GU, Rao CNR, Roberts MW (1995) Nature of the oxygen species at Ni (1 1 0) and Ni (1 0 0) surfaces revealed by exposure to oxygen and oxygen-ammonia mixtures: evidence for the surface reactivity of O-type species. J Phys Chem 99:3310–3316

    Article  CAS  Google Scholar 

  37. Pal J, Ganguly M, Mondal C, Negishi Y, Pal T (2015) Precursor salt assisted syntheses of high-index faceted concave hexagon and nanorod-like polyoxometalates. Nanoscale 7:708–719

    Article  CAS  PubMed  Google Scholar 

  38. Huntley DR (1992) The mechanism of the desulfurization of benzenethiol by nickel (110). J Phys Chem 96:4550–4558

    Article  CAS  Google Scholar 

  39. Volmer M, Stratmann M, Viefhaus H (1990) Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols. Surf Interface Anal 16:278–282

    Article  CAS  Google Scholar 

  40. Volmer M, Stratmann M (1992) A surface analytical and an electrochemical study of iron surfaces modified by thiols. Appl Surf Sci 55:19–35

    Article  Google Scholar 

  41. Rota F, Prins R (2001) Role of hydrogenolysis and nucleophilic substitution in hydrodenitrogenation over sulfided NiMo/γ-Al2O3. J Catal 202:195–199

    Article  CAS  Google Scholar 

  42. Zhao Y, Prins R (2004) Mechanisms of the hydrodenitrogenation of alkylamines with secondary and tertiary α-carbon atoms on sulfided NiMo/Al2O3. J Catal 222:532–544

    Article  CAS  Google Scholar 

  43. Oyama ST, Lee YK (2005) Mechanism of hydrodenitrogenation on phosphides and sulfides. J Phys Chem B 109:2109–2119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21473017 and 21673029), the United Funds of NSFC-Liaoning (U1508205), and the Liaoning Provincial Natural Science Foundation of China (201602158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 841 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Li, X., Wang, A. et al. Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase. Catal Lett 148, 1579–1588 (2018). https://doi.org/10.1007/s10562-018-2370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2370-z

Keywords

Navigation