Advertisement

Catalysis Letters

, Volume 148, Issue 6, pp 1703–1713 | Cite as

Efficient Synthesis of Branched Polyamine Based Thermally Stable Heterogeneous Catalyst for Knoevenagel Condensation at Room Temperature

  • Haribandhu Chaudhuri
  • Radha Gupta
  • Subhajit Dash
Article

Abstract

In this paper, a new convenient strategy for the synthesis of polyethylenimine functionalized Si-MCM-41 grafted on surface modified graphene oxide has been developed. The as-synthesised catalyst exerts good catalytic activity and reusability toward Knoevenagel condensation of different substituted aromatic aldehydes with malononitrile and ethyl cyanoacetate. Moreover, it shows remarkable thermal stability. The physicochemical characteristics of the catalyst as probed by FTIR, XRD, N2 sorption isotherms, TGA, XPS, FESEM, TEM, and solid state 13C NMR analyses, were discussed to get an idea about the catalytic mechanism of Knoevenagel condensation.

Graphical Abstract

Keywords

Si-MCM-41–PEI–GO catalyst Knoevenagel condensation Room temperature reaction Heterogeneous catalysis 

Notes

Acknowledgements

HC would like to thank SAIF, Punjab University, India for NMR facility.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2018_2368_MOESM1_ESM.docx (958 kb)
Supplementary material 1 (DOCX 957 KB)

References

  1. 1.
    Dhakshinamoorthy A, Alvaro M, Concepción P, Fornés V, Garcia H (2012) Chem Commun 48:5443–5445CrossRefGoogle Scholar
  2. 2.
    Dhakshinamoorthy A, Alvaro M, Puche M, Fornés V, Garcia H (2012) ChemCatChem 4:2026–2030CrossRefGoogle Scholar
  3. 3.
    Kumar AV, Rao KR (2011) Tetrahedron Lett 52:5188–5191CrossRefGoogle Scholar
  4. 4.
    Verma S, Mungse HP, Kumar N, Choudhary S, Jain SL, Sain B, Khatri OP (2011) Chem Commun 47:12673–12675CrossRefGoogle Scholar
  5. 5.
    Mirza-Aghayan M, Boukherroub R, Nemati M, Rahimifard M (2012) Tetrahedron Lett 53:2473–2475CrossRefGoogle Scholar
  6. 6.
    Dreyer DR, Jia HP, Bielawski CW (2010) Angew Chem Int Ed 49:6813–6816Google Scholar
  7. 7.
    Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131:8262–8270CrossRefGoogle Scholar
  8. 8.
    Chaudhuri H, Dash S, Gupta R, Pathak DD, Sarkar A (2017) ChemistrySelect 2:1835–1842CrossRefGoogle Scholar
  9. 9.
    Zhang N, Qiu H, Wang W, Li Y, Wang X, Gao J (2011) J Mater Chem 21:11080–11083CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Chen C, Wu G, Guan N, Li L, Zhang J (2014) Chem Commun 50:4305–4308CrossRefGoogle Scholar
  11. 11.
    Wu T, Wang X, Qiu H, Gao J, Wang W, Liu Y (2012) J Mater Chem 22:4772–4779CrossRefGoogle Scholar
  12. 12.
    Rodrigo E, Alcubilla BG, Sainz R, Fierro JLG, Ferrittob R, Cid MB (2014) Chem Commun 50:6270–6273CrossRefGoogle Scholar
  13. 13.
    Zhang W, Zhao Q, Liu T, Gao Y, Li Y, Zhang G, Zhang F, Fan X (2014) Ind Eng Chem Res 53:1437–1441CrossRefGoogle Scholar
  14. 14.
    Zhang F, Jiang H, Li X, Wu X, Li H (2014) ACS Catal 4:394–401CrossRefGoogle Scholar
  15. 15.
    Wei Z, Yang Y, Hou Y, Liu Y, He X, Deng S (2014) ChemCatChem 6:2354–2363CrossRefGoogle Scholar
  16. 16.
    Ji J, Zhang G, Chen H, Wang S, Zhang G, Zhang F, Fan X (2011) Chem Sci 2:484–487CrossRefGoogle Scholar
  17. 17.
    Wang X, Lin KSK, Chan JCC, Cheng S (2005) J Phys Chem B 109:1763–1769CrossRefGoogle Scholar
  18. 18.
    Phan NTS, Jones CW (2006) J Mol Catal A 253:123–131CrossRefGoogle Scholar
  19. 19.
    Wu T, Wang X, Qiu H, Gao J, Wang W, Liu Y (2012) J Mater Chem 22:4772–4779CrossRefGoogle Scholar
  20. 20.
    Islam SM, Roy AS, Dey RC, Paul S (2014) J Mol Catal A 394:66–73CrossRefGoogle Scholar
  21. 21.
    Yang A, Li J, Zhang C, Zhang W, Ma N (2015) Appl Surf Sci 346:43–450Google Scholar
  22. 22.
    Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403–1419CrossRefGoogle Scholar
  23. 23.
    Chaudhuri H, Dash S, Sarkar A (2016) Ind Eng Chem Res 55:10084–10094CrossRefGoogle Scholar
  24. 24.
    Olkhovyk O, Jaroniec M (2005) J Am Chem Soc 127:60–61CrossRefGoogle Scholar
  25. 25.
    Karin M, Thomas B (1998) Chem Mater 10:2950–2963CrossRefGoogle Scholar
  26. 26.
    Zhuang X, Wan Y, Feng C, Shen Y, Zhao D (2009) Chem Mater 21:706–716CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Qiao ZA, Li Y, Liu Y, Huo Q (2011) J Mater Chem 21:17283–17289CrossRefGoogle Scholar
  28. 28.
    Shieh FK, Hsiao CT, Wu JW, Sue YC, Bao YL, Liu YH, Wan L, Hsu MH, Deka JR, Kao HM (2013) J Hazard Mater 260:1083–1091CrossRefGoogle Scholar
  29. 29.
    Qiao Z, Zhang L, Guo M, Liu Y, Huo Q (2009) Chem Mater 21:3823–3829CrossRefGoogle Scholar
  30. 30.
    Ho KY, McKay G, Yeung KL (2003) Langmuir 19:3019–3024CrossRefGoogle Scholar
  31. 31.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  32. 32.
    Mitra AK, De A, Karchaudhuri N (1999) Synth Commun 29:2731–2739CrossRefGoogle Scholar
  33. 33.
    Keithellakpam S, Moirangthem N, Laitonjam WS (2015) Ind J Chem 54B:1157–1161Google Scholar
  34. 34.
    Kumari S, Shekhar A, Mungse HP, Khatri OP, Pathak DD (2014) RSC Adv 4:41690–41695CrossRefGoogle Scholar
  35. 35.
    Chaudhuri H, Dash S, Sarkar A (2016) New J Chem 40:3622–3634CrossRefGoogle Scholar
  36. 36.
    Nayab S, Farrukh A, Oluz Z, Tuncel E, Tarique SR, Rahman H, Kirchhoff K, Duran H, Yameen B (2014) ACS Appl Mater Intrefaces 6:4408–4417CrossRefGoogle Scholar
  37. 37.
    Kou L, Gao C (2011) Nanoscale 3:519–528CrossRefGoogle Scholar
  38. 38.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565CrossRefGoogle Scholar
  39. 39.
    Kumari S, Shekhar A, Pathak DD (2016) RSC Adv 6:15340–15344CrossRefGoogle Scholar
  40. 40.
    Ribeiro SM, Serra AC, Gonsalves ADAR (2011) Appl Catal A 399:126–133CrossRefGoogle Scholar
  41. 41.
    Wagner CD, Hilery DE, Kinisky TG, Six HA, Perez-Robles JF, Zamorano-Ulloa R, Gonzalez-Hernandez J (2004) J Phys Chem Solids 65:1045–1052CrossRefGoogle Scholar
  42. 42.
    Chaudhuri H, Dash S, Sarkar A (2016) RSC Adv 6:99444–99454CrossRefGoogle Scholar
  43. 43.
    Zhou X, Pan Y, Xu J, Wang A, Wu S, Shen J (2015) RSC Adv 5:105855–105861CrossRefGoogle Scholar
  44. 44.
    Yu J, Xu C, Tian Z, Lin Y, Shi Z (2016) New J Chem 40:2083–2088CrossRefGoogle Scholar
  45. 45.
    Liu Q, Ai H, Li Z (2011) Ultrason Sonochem 18:477–479CrossRefGoogle Scholar
  46. 46.
    Liu Q, Ai HM (2012) Synth Commun 42:3004–3010CrossRefGoogle Scholar
  47. 47.
    Liu Q, Ai HM, Feng S (2012) Synth Commun 42:122–127CrossRefGoogle Scholar
  48. 48.
    Macquarrie DJ, Clark JH, Lambert A, Mdoe JEG, Priest A (1997) React Funct Polym 35:153–158CrossRefGoogle Scholar
  49. 49.
    Macquarrie DJ, Jackson DB (1997) Chem Commun 18:1781–1782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Organic Materials Research Laboratory, Department of Applied ChemistryIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations