Strengthening NADPH Regeneration for Improving Photo-biocatalytic Ketones Asymmetric Reduction Reaction by Synechocystis Through Overexpression of FNR

  • Wei Luo
  • Xin-Xing Deng
  • Jiao Huo
  • Tao Ruan
  • Zhi-Wei Gong
  • Jia-Bao Yan
  • Zhong-Hua Yang
  • Can Quan
  • Zhi-Fang Cui
Article
  • 29 Downloads

Abstract

Microalgae are excellent biocatalyst candidates for photo-biocatalytic-asymmetric reduction of prochiral ketones to produce enantiomer alcohols. In the biocatalysis asymmetric reduction of carbonyl group process, the cofactor, NADPH, plays a key role. So the current study focused on the effect of NADPH availability on the reduction. Photosynthesis is a main pathway for NADPH regeneration in microalgae, and the ferredoxin-NADP+ oxidoreductase (FNR) is the key enzyme in this process. In this work, we constructed an engineered cyanobacterium Synechocystis sp. PCC6803::Ω-PpetE-petH to overexpress FNR gene petH to strengthen NADPH regeneration. The results show that the intracellular NADPH content was increased 80.8% compared to the wild type. Applying the Synechocystis sp. PCC6803::Ω-PpetE-petH to catalyze the model asymmetric reduction reaction (reduction of acetophenone to S-phenylethanol), the yield was improved 61.2% compared to the wild-type. This work makes the microalgal biocatalysis asymmetric reduction process become more preponderant via providing a new route to enhance the regeneration of cofactor NADPH.

Graphical Abstract

Putative metabolic process of nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and the photo-biocatalytic-asymmetric reduction reaction of prochiral ketones in microalgal cells.

Keywords

Biocatalyst Synechocystis sp. PCC6803 FNR NADPH Asymmetric reduction 

Notes

Acknowledgements

The present work was financed by the National Natural Science Foundation of China (Grant No. 21376184), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), Foundation from Educational Commission of Hubei Province of China (Grant No. D20121108), the Ministry of Science and Technology of China (2017YFF0205803), and the National Institute of Metrology of China (21-AKY1615), and Science and Technology Innovation Special Major Project of Hubei Province (No. 2017ACA179).

Supplementary material

10562_2018_2367_MOESM1_ESM.docx (380 kb)
Supplementary material 1 (DOCX 380 KB)

References

  1. 1.
    Shimoda K, Kubota N, Hamada H, Kaji M, Hirata T (2004) Tetrahedron Asymmetr 15:1677–1679CrossRefGoogle Scholar
  2. 2.
    Anemaet IG, Martijn B, Hellingwerf KJ (2010) Mar Biotechnol 12:619–629CrossRefGoogle Scholar
  3. 3.
    Shi S, Vallerodríguez JO, Siewers V, Nielsen J (2015) Biotechnol J 6:277–285CrossRefGoogle Scholar
  4. 4.
    Yamanaka R, Nakamura K, Murakami A (2011) AMB Express 1:1–8CrossRefGoogle Scholar
  5. 5.
    Nakamura K, Yamanaka R (2002) Chem Commun 16:1782–1783CrossRefGoogle Scholar
  6. 6.
    Havel J, Weuster-Botz D (2007) Appl Microbiol Biotechnol 75:1031–1037CrossRefGoogle Scholar
  7. 7.
    Yang Z-H, Luo L, Chang X, Zhou W, Chen G-H, Zhao Y, Wang Y-J (2012) J Ind Microbiol Biotechnol 39:835–841CrossRefGoogle Scholar
  8. 8.
    Luo W, Deng X-X, Gong Z-W, Yang Z-H (2016) Asia-Pac J Chem Eng 11:533–538CrossRefGoogle Scholar
  9. 9.
    Spaans SK, Weusthuis RA, John VDO, Kengen SW (2015) Front Microbiol 6:742CrossRefGoogle Scholar
  10. 10.
    Li W, Wu H, Li M, San KY (2017) Biotechnol. Bioeng 115:444–452CrossRefGoogle Scholar
  11. 11.
    Wang Y, San KY, Bennett GN (2013) Curr Opin Biotechnol 24:994–999Google Scholar
  12. 12.
    Yang T, Man Z, Rao Z, Xu M, Zhang X, Xu Z (2014) J Ind Microbiol Biotechnol 41:1743–1752CrossRefGoogle Scholar
  13. 13.
    Li H-D, Sun Z-H, Ni Y (2013) Chem Res Chin Univ 29:1140–1148Google Scholar
  14. 14.
    Cai P, An M, Xu L, Xu S, Hao N, Li Y, Guo K, Yan M (2012) Biotechnol Lett 34:2223–2227CrossRefGoogle Scholar
  15. 15.
    Wang Y-J, Shen W, Luo X, Liu Z-Q, Zheng Y-G (2017) Biotechnol Prog 33:1235–1242CrossRefGoogle Scholar
  16. 16.
    Wang Y-J, Ying B-B, Chen M, Shen W, Liu Z-Q, Zheng Y-G (2017) World J Microbiol Biotechnol 33:144CrossRefGoogle Scholar
  17. 17.
    Matsuda T, Yamagishi Y, Koguchi S, Iwai N, Kitazume T (2006) Tetrahedron Lett 37:4619–4622CrossRefGoogle Scholar
  18. 18.
    Zhu D, Yang Y, Hua L (2006) J Org Chem 71:4202–4205CrossRefGoogle Scholar
  19. 19.
    Pschorn R, Ruhle W, Wild A (1998) Photosynth Res 17:217–229CrossRefGoogle Scholar
  20. 20.
    Arakaki AK, Ceccarelli EA, Carrillo N (1997) FASEB J 11:133–140CrossRefGoogle Scholar
  21. 21.
    Medina M, Luquita A, Tejero J, Hermoso J, Mayoral T, Sanzaparicio J, Grever K, Gomezmoreno C (2001) J Biol Chem 276:11902–11912CrossRefGoogle Scholar
  22. 22.
    Thor JV, Hellingwerf KJ, Matthijs HCP (1998) Plant Mol Biol 36:353–363Google Scholar
  23. 23.
    Gao H, Tang Q, Xu X-D (2007) Acta Hydrobiol Sin 31:240–244Google Scholar
  24. 24.
    Li S-S, Yong J-R, Qi Y-L, Zhang Y, Zhao L, Xia S-L, Li D, Wang H-L, Bao Q-Y, Li H-Z (2011) Hereditas 33:1134–1140CrossRefGoogle Scholar
  25. 25.
    Grigorieva G, Shestakov S (1982) FEMS Microbiol Lett 13:367–370CrossRefGoogle Scholar
  26. 26.
    Williams J (1998) Methods Enzymol 167:766–778Google Scholar
  27. 27.
    Kuchmina E, Wallner T, Kryazhov S, Zinchenko VV, Wilde A (2012) J Biotechnol 162:75–80CrossRefGoogle Scholar
  28. 28.
    Zhang L, Mcspadden B, Pakrasi HB, Whitmarsh J (1992) J Biol Chem 267:19054–19059Google Scholar
  29. 29.
    Ghassemian M, Wong B, Ferreira F, Markley JL, Straus NA (1994) Microbiology 140:1151–1159CrossRefGoogle Scholar
  30. 30.
    Tejero J, Martínez-Julvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gomez-Moreno C, Medina M (2003) J Biol Chem 278(49):49203–49214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Luo
    • 1
  • Xin-Xing Deng
    • 1
  • Jiao Huo
    • 1
  • Tao Ruan
    • 1
  • Zhi-Wei Gong
    • 1
  • Jia-Bao Yan
    • 1
  • Zhong-Hua Yang
    • 1
    • 3
  • Can Quan
    • 2
  • Zhi-Fang Cui
    • 4
  1. 1.School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhanChina
  2. 2.Division of Chemical Metrology and Analytical ScienceNational of MetrologyBeijingChina
  3. 3.Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and TechnologyWuhanChina
  4. 4.School of Chemistry and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations