Catalysis Letters

, Volume 148, Issue 5, pp 1499–1503 | Cite as

CO2 Methanation on Co-sputtered Ru–Metal Oxides Catalysts Prepared Using the Polygonal Barrel-Sputtering Method

  • Mitsuhiro Inoue
  • Asuka Shima
  • Kaori Miyazaki
  • Baowang Lu
  • Takayuki Abe
  • Yoshitsugu Sone


CO2 methanation catalysts were prepared by co-sputtering with Ru and metal oxides such as TiO2 and ZrO2 using the polygonal barrel-sputtering method. The co-sputtering technique not only resulted in the decrease in the reaction temperature but also maintained the deposition of smaller Ru particles during the reaction at higher temperature.

Graphical Abstract


Heterogeneous catalysis Electron microscopy CO2 methanation catalysts Ru–metal oxide co-sputtering Ru particle size Polygonal barrel-sputtering method 



This work was supported by CREST, Japan Science and Technology Agency (JPMJCR1442).


  1. 1.
    Wang F, He S, Chen H, Wang B, Zheng L, Wei M, Evans DG, Duan X (2016) J Am Chem Soc 138:6298CrossRefGoogle Scholar
  2. 2.
    Westermann A, Azambre B, Bacariza MC, Grac I, Ribeiro MF, Lopes JM, Henriques C (2015) Appl Catal B 174–175:120CrossRefGoogle Scholar
  3. 3.
    Tada S, Ochieng OJ, Kikuchi R, Haneda T, Kameyama H (2014) Int J Hydrogen Energy 39:10090CrossRefGoogle Scholar
  4. 4.
    Büchel R, Baiker A, Pratsinis SE (2014) Appl Catal A 477:93CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Zhang S, Ye Y, Zhang X, Wang L, Zhu W, Cheng F, Tao F (2012) ACS Catal 2:2403CrossRefGoogle Scholar
  6. 6.
    Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renew Energy 85:1371CrossRefGoogle Scholar
  7. 7.
    Frontera P, Macario A, Ferraro M, Antonucci P (2017) Catalysts 7:59CrossRefGoogle Scholar
  8. 8.
    Abe T, Tanizawa M, Watanabe K, Taguchi A (2009) Energy Environ Sci 2:315CrossRefGoogle Scholar
  9. 9.
    Shima A, Sakurai M, Sone Y, Ohnishi M, Abe T (2012) Development of a CO2 reduction catalyst for the Sabatier reaction. In: Proceedings of the 42nd international conference on environmental systems, American Institute of Aeronautics and Astronautics, VirginiaGoogle Scholar
  10. 10.
    Akamaru S, Shimazaki T, Kubo M, Abe T (2014) Appl Catal A 470:405CrossRefGoogle Scholar
  11. 11.
    Inoue M, Shingen H, Kitami T, Akamaru S, Taguchi A, Kawamoto Y, Tada A, Ohtawa K, Ohba K, Matsuyama M, Watanabe K, Tsubone I, Abe T (2008) J Phys Chem C 112:1479CrossRefGoogle Scholar
  12. 12.
    Umeda M, Nagai K, Shibamine M, Inoue M (2010) Phys Chem Chem Phys 12:7041CrossRefGoogle Scholar
  13. 13.
    Umeda M, Matsumoto Y, Inoue M, Shironita S (2013) Electrochim Acta 101:142CrossRefGoogle Scholar
  14. 14.
    Guo M, Lu G (2014) Catal Commun 54:55CrossRefGoogle Scholar
  15. 15.
    Lu H, Yang X, Gao G, Wang K, Shi Q, Wang J, Han C, Liu J, Tong M, Liang X, Li C (2014) Int J Hydrogen Energy 39:18894CrossRefGoogle Scholar
  16. 16.
    Xu J, Su X, Duan H, Hou B, Lin Q, Liu X, Pan X, Pei G, Geng H, Huang Y, Zhang T (2016) J Catal 333:227CrossRefGoogle Scholar
  17. 17.
    Yan Y, Dai Y, He H, Yu Y, Yang Y (2016) Appl Catal B 196:108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hydrogen Isotope Research CenterUniversity of ToyamaToyamaJapan
  2. 2.Japan Aerospace Exploration Agency (JAXA)ChofuJapan
  3. 3.Japan Aerospace Exploration Agency (JAXA)SagamiharaJapan

Personalised recommendations