Advertisement

Catalysis Letters

, Volume 148, Issue 5, pp 1336–1344 | Cite as

Highly Selective Hydrogenation with Ionic Liquid Stabilized Nickel Nanoparticles

  • He-yan Jiang
  • Si-shi Zhang
  • Bin Sun
Article

Abstract

Nickel nanoparticles (Ni NPs) were conveniently synthesized from the reduction of nickel(II) salt with NaBH4 or hydrazine in the presence of the ionic liquid 1-butyl-2,3-dimethylimidazolium (S)-2-pyrrolidinecarboxylic acid salt. UV/Vis spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy were employed to characterize the interaction between the metal and the ionic liquid. The face-centered cubic structure of the Ni NPs(0) was confirmed by X-ray diffraction characterization. Transmission electron microscopy images revealed well-dispersed Ni particles of approximately 5.1 nm in average diameter. The ionic liquid immobilized Ni NPs were employed as highly efficient catalysts in chemoselective hydrogenation of quinoline and relevant compounds, as well as aromatic nitro compounds under mild reaction conditions. The Ni NPs can be efficiently recovered and reused.

Graphical Abstract

Keywords

Chemoselective hydrogenation Nanoparticles Ionic liquids Quinoline Nickel 

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21201184), Chongqing Technology and Business University (1751039) and Chongqing Key Laboratory of Catalysis and New Environmental Materials (CQCM-2016-02).

References

  1. 1.
    Philippot K (2013) In: Serp P (ed) Concepts in nanocatalysis. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Dupont J, Scholten JD (2010) Chem Soc Rev 39:1780CrossRefGoogle Scholar
  3. 3.
    Scholten JD, Leal BC, Dupont J (2012) ACS Catal 2:184CrossRefGoogle Scholar
  4. 4.
    Sarvi I, Gholizadeh M, Izadyar M (2017) Catal Lett 147:1162CrossRefGoogle Scholar
  5. 5.
    Ghosh BK, Moitra D, Chandel M, Patra MK, Vadera SR, Ghosh NN (2017) Catal Lett 147:1061CrossRefGoogle Scholar
  6. 6.
    Yamada YMA, Arakawa T, Hocke H, Uozumi Y (2007) Angew Chem Int Ed 46:704CrossRefGoogle Scholar
  7. 7.
    Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852CrossRefGoogle Scholar
  8. 8.
    Jansat S, Gomez M, Philippot K, Muller G, Guiu E, Claver C, Castillon S, Chaudret B (2004) J Am Chem Soc 126:1592CrossRefGoogle Scholar
  9. 9.
    Zhang C, Lu D, Jiang P, Li J, Leng Y (2017) Catal Lett 147:2534CrossRefGoogle Scholar
  10. 10.
    Nowicki A, Boulaire VL, Roucoux A (2007) Adv Synth Catal 349:2326CrossRefGoogle Scholar
  11. 11.
    Migowski P, Machado G, Texeira SR, Alves MCM, Morais J, Traversec A, Dupont J (2007) Phys Chem Chem Phys 9:4814CrossRefGoogle Scholar
  12. 12.
    Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) J Am Chem Soc 124:4228CrossRefGoogle Scholar
  13. 13.
    Rossi LM, Machado G, Fichtner PFP, Teixeira SR, Dupont J (2004) Catal Lett 92:149CrossRefGoogle Scholar
  14. 14.
    Rossi LM, Machado G (2009) J Mol Catal A 298:69CrossRefGoogle Scholar
  15. 15.
    Hu Y, Yu Y, Hou Z, Yang H, Feng B, Li H, Qiao Y, Wang X, Hua L, Pan Z, Zhao X (2010) Chem Asian J 5:1178CrossRefGoogle Scholar
  16. 16.
    Denicourt-Nowicki A, Leger B, Roucoux A (2011) Phys Chem Chem Phys 13:13510CrossRefGoogle Scholar
  17. 17.
    Jiang H, Zheng X (2015) Catal Sci Technol 5:3728CrossRefGoogle Scholar
  18. 18.
    Zhu D, Jiang H, Zhang L, Zheng X, Fu H, Yuan M, Chen H, Li R (2014) ChemCatChem 6:2954CrossRefGoogle Scholar
  19. 19.
    Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S (2014) Catal Sci Technol 4:1939CrossRefGoogle Scholar
  20. 20.
    Qiao X, Bao Z, Xing H, Yang Y, Ren Q, Zhang Z (2017) Catal Lett 147:1673CrossRefGoogle Scholar
  21. 21.
    Fache F (2004) Synlett 15:2827CrossRefGoogle Scholar
  22. 22.
    Jiang H, Zheng X (2015) App Catal A 499:118CrossRefGoogle Scholar
  23. 23.
    Fang M, Machalaba N, Sánchez-Delgado RA (2011) Dalton Trans 40:10621CrossRefGoogle Scholar
  24. 24.
    Rueping M, Koenigs RM, Borrmann R, Zoller J, Weirich TE, Mayer J (2011) Chem Mater 23:2008CrossRefGoogle Scholar
  25. 25.
    Fukumoto K, Yoshizawa M, Ohno H (2005) J Am Chem Soc 127:2398CrossRefGoogle Scholar
  26. 26.
    Liu Q, Wu KK, Tang F, Yao LH, Yang F, Nie Z, Yao SZ (2009) Chem Eur J 15:9889CrossRefGoogle Scholar
  27. 27.
    Devred F, Hoffer BW, van Langeveld AD, Kooyman PJ, Zandbergen HW (2003) App Catal A 244:291CrossRefGoogle Scholar
  28. 28.
    Migowski P, Machado G, Texeira SR, Alves MCM, Morais J, Traverse A, Dupont J (2007) Phys Chem Chem Phys 9:4814CrossRefGoogle Scholar
  29. 29.
    Umpierre AP, de Jesύs E, Dupont J (2011) ChemCatChem 3:1413CrossRefGoogle Scholar
  30. 30.
    Schwab F, Lucas M, Claus P (2011) Angew Chem Int Ed 50:10453CrossRefGoogle Scholar
  31. 31.
    Blaser HU, Steiner H, Studer M (2009) ChemCatChem 1:210CrossRefGoogle Scholar
  32. 32.
    Rathore PS, Patidar R, Rathore S, Thakore S (2014) Catal Lett 144:439CrossRefGoogle Scholar
  33. 33.
    Mahata N, Cunha AF, Orfao JJM, Figueiredo JL (2008) App Catal A 351:204CrossRefGoogle Scholar
  34. 34.
    Du Y, Chen HL, Chen R, Xu NP (2004) App Catal A 277:259CrossRefGoogle Scholar
  35. 35.
    Hoffer BW, Crezee E, Devred F, Mooijmana PRM, Sloof WG, Kooyman PJ, van Langeveld AD, Kapteijn F, Moulijn JA (2003) App Catal A 253:437CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission, Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and ResourcesChongqing Technology and Business UniversityChongqingChina

Personalised recommendations