Skip to main content
Log in

Synthesis of Benzo[1,4]thiazines via Ring Expansion of 2-Aminobenzothiazoles with Terminal Alkynes Under Metal–Organic Framework Catalysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Copper–organic framework Cu–MOF-74 was synthesized, and consequently utilized as a heterogeneous catalyst for the synthesis of benzo[1,4]thiazines via ring expansion of 2-aminobenzothiazoles with terminal alkynes. Different from previous works, the reaction proceeded readily in the presence of lower catalyst concentration, at lower temperature, and under ligand-free conditions. The combination of 5 mol% framework catalyst, 20 mol% Cs2CO3, and 3 equivalents of di-tert-butyl peroxide led to high yields of benzo[1,4]thiazines. This copper-based framework demonstrated higher catalytic efficiency than a series of MOF-based heterogeneous catalysts and traditional homogeneous catalysts. In this system, the donation of soluble active copper species to the formation of benzo[1,4]thiazines was trivial. The copper–organic framework was reutilized without a remarkable decline in catalytic efficiency. To our best knowledge, this ring expansion reaction was not previously performed with a recyclable catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lin Y-m, Lu G-p, Wang R-k, Yi W-b (2016). Org Lett 18:6424–6427

    Article  CAS  Google Scholar 

  2. Kavas Ö, Altug C (2017) Tetrahedron 73:2656–2661

    Article  CAS  Google Scholar 

  3. Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X (2013) Org Lett 15:2594–2597

    Article  CAS  Google Scholar 

  4. Chu J-J, Hu B-L, Liao Z-Y, Zhang X-G (2016) J Org Chem 81:8647–8652

    Article  CAS  Google Scholar 

  5. Mitra S, Chakraborty A, Mishra S, Majee A, Hajra A (2014) Org Lett 16:5652–5655

    Article  CAS  Google Scholar 

  6. Qiu J-W, Hu B-L, Zhang X-G, Tang R-Y, Zhong P, Li J-H (2015) Org Biomol Chem 13:3122–3127

    Article  CAS  Google Scholar 

  7. Balwe SG, Shinde VV, Jeong YT (2016) Tetrahedron 57:5074–5078

    Article  CAS  Google Scholar 

  8. Wang H, Zhu Q-L, Zou R, Xu Q (2017) Chem 2:52–80

    Article  CAS  Google Scholar 

  9. Milner PJ, Martell JD, Siegelman RL, Gygi D, Weston SC, Long JR (2018) Chem Sci 9:160–174. https://doi.org/10.1039/C7SC04266C

    Article  CAS  Google Scholar 

  10. Rani P, Srivastava R (2017) New J Chem 41:8166–8177

    Article  CAS  Google Scholar 

  11. Liu J, Wöll C (2017) Chem Soc Rev 46:5730–5770

    Article  CAS  Google Scholar 

  12. Zhao Y, Jiang L, Shangguan L, Mi L, Liu A, Liu S (2018) J Mater Chem A 6:2828–2833

    Article  CAS  Google Scholar 

  13. Surib NA, Sim LC, Leong KH, Kuila A, Saravanan P, Lo KM, Ibrahim S, Bahnemann D, Jang M (2017) RSC Adv 7:51272–51280

    Article  CAS  Google Scholar 

  14. Oar-Arteta L, Wezendonk T, Sun X, Kapteijn F, Gascon J (2017) Mater Chem Front 1:1709–1745

    Article  CAS  Google Scholar 

  15. Doonan CJ, Sumby CJ (2017) CrystEngComm 19:4044–4048

    Article  CAS  Google Scholar 

  16. Tang L, Zhang S, Wu Q, Wang X, Wu H, Jiang Z (2018) J Mater Chem A 6:2964–2973

    Article  CAS  Google Scholar 

  17. Duan C, Li F, Luo S, Xiao J, Li L, Xi H (2018) Chem Eng J 334:1477–1483

    Article  CAS  Google Scholar 

  18. Anbu N, Dhakshinamoorthy A (2018) J Ind Eng Chem 58:9–17

    Article  CAS  Google Scholar 

  19. Lup ANK, Abnisa F, Daud WMAW., Aroua MK (2017) J Ind Eng Chem 56:1–34

    Article  Google Scholar 

  20. Clercq RD, Dusselier M, Sels BF (2017) Green Chem 19:5012–5040

    Article  Google Scholar 

  21. Dhakshinamoorthy A, Asiri AM, Alvaro M, Garcia H (2018) Green Chem 20:86–107

    Article  CAS  Google Scholar 

  22. Zhang L, Chen X, Peng Z, Liang C (2018) Mol Catal 449:14–24

    Article  Google Scholar 

  23. Kumar G, Das SK (2017) Inorg Chem Front 4:202–233

    Article  CAS  Google Scholar 

  24. Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Xamena FXLI, Speybroeck VV, Gascon J (2017) Chem Soc Rev 46:3134–3184

    Article  CAS  Google Scholar 

  25. Maina JW, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée LF (2017) Mater Horiz 4:345–361

    Article  CAS  Google Scholar 

  26. Huang Y-B, Liang J, Wang X-S, Cao R (2017) Chem Soc Rev 46:126–157

    Article  CAS  Google Scholar 

  27. Gupta AK, De D, Tomar K, Bharadwaj PK (2018) Dalton Trans 47:1624–1634

    Article  CAS  Google Scholar 

  28. Sun C-Y, To W-P, Hung F-F, Wang X-L, Su Z-M, Che C-M (2018) Chem Sci 9:2357–2364

    Article  CAS  Google Scholar 

  29. Zhang P, Chen C, Kang X, Zhang L, Wu C, Zhang J, Han B (2018) Chem Sci 9:1339–1343

    Article  CAS  Google Scholar 

  30. Elgrishi N, Chambers MB, Wang X, Fontecave M (2017) Chem Soc Rev 46:761–796

    Article  CAS  Google Scholar 

  31. Bobbitt NS, Mendonca ML, Howarth AJ, Islamoglu T, Hupp JT, Farha OK, Snurr RQ (2017) Chem Soc Rev 46:3357–3385

    Article  CAS  Google Scholar 

  32. He W-L, Yang X-L, Zhao M, Wu C-D (2018) J Catal 358:43–49

    Article  CAS  Google Scholar 

  33. Sun W-J, Xi F-G, Pan W-L, Gao E-Q (2017) Mol Catal 430:36–42

    Article  CAS  Google Scholar 

  34. Bunchuay T, Ketkaew R, Chotmongkolsap P, Chutimasakul T, Kanarat J, Tantirungrotechai Y, Tantirungrotechai J (2017) Catal Sci Technol 7:6069–6079

    Article  CAS  Google Scholar 

  35. James BR, Boissonnault JA, Wong-Foy AG, Matzger AJ, Sanford MS (2018) RSC Adv 8:2132–2137

    Article  CAS  Google Scholar 

  36. Sanz R, Martínez F, Orcajo G, Wojtas L, Briones D (2013) Dalton Trans 42:2392–2398

    Article  CAS  Google Scholar 

  37. Wang LJ, Deng H, Furukawa H, Gándara F, Cordova KE, Peri D, Yaghi OM (2005) Inorg Chem 53:5881–5883

    Article  Google Scholar 

  38. Katz MJ, Howarth AJ, Moghadam PZ, DeCoste JB, Snurr RQ, Hupp JT, Farha OK (2016) Dalton Trans 45:4150–4153

    Article  CAS  Google Scholar 

  39. Luz I, Leo´n A, Boronat M, Xamena FXLI, Corma A (2013) Catal Sci Technol 3:371–379

    Article  CAS  Google Scholar 

  40. Kwak H, Lee SH, Kim SH, Lee YM, Park BK, Lee YJ, Jun JY, Kim C, Kim S-J, Kim Y (2009) Polyhedron 28:553–561

    Article  CAS  Google Scholar 

  41. Hirano K, Miura M (2012) Chem Commun 48:10704–10714

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Viet Nam National Foundation for Science and Technology Development (NAFOSTED) for financial support under Project code 104.05-2017.32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam T. S. Phan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of Interest

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, H.V., Le, Y.T.N., Tran, D.T.M. et al. Synthesis of Benzo[1,4]thiazines via Ring Expansion of 2-Aminobenzothiazoles with Terminal Alkynes Under Metal–Organic Framework Catalysis. Catal Lett 148, 1383–1395 (2018). https://doi.org/10.1007/s10562-018-2358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2358-8

Keywords

Navigation