Skip to main content

Synthesis of High Surface Area TiO2 Aerogel Support with Pt Nanoparticle Catalyst and CO Oxidation Study

Abstract

We demonstrate the preparation and catalytic testing of nanocatalysts composed of TiO2 synthesized in aerogel using a supercritical drying process with Pt nanoparticles deposited on the mesopore oxide surface. By controlling the aging time, we found conditions that led to TiO2 with a surface area among the highest ever reported for a TiO2 material in aerogel form (~ 685 m2 g− 1). The chosen synthesis route also features good control over the pore volume and pore size. Even though our aerogel TiO2 support showed an amorphous structure before calcination, 90.2% anatase and 9.8% rutile phases co-existed after calcination at 500 °C for 2 h with an average particle size of about 17 nm based on XRD results. The as-synthesized TiO2 and Pt/TiO2 were both used as catalysts for the CO oxidation reaction. Uncalcined Pt/TiO2 showed 100% conversion at 300 °C. After calcination, Pt/TiO2 exhibited a significantly higher catalytic activity, showing 100% conversion at 125 °C and an activation energy of only 13.4 kcal mol− 1. We show that TiO2 synthesized by the aerogel method can be an excellent support material for nanocatalysis because of its high surface area and facile and scalable synthesis.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Somorjai GA, Park JY (2008) Top Catal 49:126

    CAS  Article  Google Scholar 

  2. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212

    CAS  Article  Google Scholar 

  3. Hamad S, Catlow CRA, Woodley SM (2005) J Phys Chem B 109(33):15741

    CAS  Article  Google Scholar 

  4. Hengerer R, Bolliger B, Erbudak M, Gratzel M (2000) Surf Sci 460:162

    CAS  Article  Google Scholar 

  5. Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM (2013) J Nanostruct 3:1

    Google Scholar 

  6. Nowotny MK, Bak T, Nowotny J (2006) J Phys Chem B 110(33):16270

    CAS  Article  Google Scholar 

  7. Naik B, Kim SM, Jung CH, Moon SY, Kim SH, Park JY (2014) Adv Mater Interfaces 1:1300018

    Article  Google Scholar 

  8. Goddeti KC, Kim SM, Lee YK, Kim SH, Park JY (2014) Catal Lett 144:1411

    CAS  Article  Google Scholar 

  9. Puma GL, Bono A, Krishnaiah D, Collin JG (2008) J Hazard Mater 157:209

    Article  Google Scholar 

  10. Colon G, Hidalgo MC, Navio JA (2002) Catal Today 76:91

    CAS  Article  Google Scholar 

  11. Calleja G, Serrano DP, Sanz R, Pizzaro P, Garcia A (2004) Ind Eng Chem Res 43:2485

    CAS  Article  Google Scholar 

  12. Wang H, Chen J, Hy S, Yu L, Xu Z, Liu B (2014) Nanoscale 6:14926

    CAS  Article  Google Scholar 

  13. Jung H, Kang YS, Sun Y (2010) Electrochim Acta 55:4637

    CAS  Article  Google Scholar 

  14. Choquette-Labbe M, Shewa WA, Lalman JA, Shanmugam SR (2014) Water 6:1785

    Article  Google Scholar 

  15. Bazargan MH, Byranvand MM, Kharat AN (2012) Int J Mat Res 103:347

    CAS  Article  Google Scholar 

  16. Andersson M, Oesterlund L, Ljungstoem S, Palmqvist A (2002) J Phys Chem B 106:10674

    CAS  Article  Google Scholar 

  17. Wahi RK, Liu Y, Falkner JC, Colvin VL (2006) J Colloid Interf Sci 302:530

    CAS  Article  Google Scholar 

  18. Shinde PS, Bhosale CH (2008) J Anal Appl Pyrolysis 82:83

    CAS  Article  Google Scholar 

  19. Brinker CJ, Ashley CS, Cairncross RA, Chen KS, Hrd AJ, Reed ST, Samuel J, Schunk PR, Schwartz RW, Scotto SC (1996) Met Cer Prt Coat 17:112

    Google Scholar 

  20. Olding T, Sayer M, Barrow D (2001) Thin Solid Films 398–399:581

    Article  Google Scholar 

  21. Stocker C, Baiker A (1998) J Non Cryst Solids 223:165

    CAS  Article  Google Scholar 

  22. Schneider M, Baiker A (1997) Catal Today 35:339

    CAS  Article  Google Scholar 

  23. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109(6):2192

    CAS  Article  Google Scholar 

  24. Schneider M, Baiker A (1992) J Mater Chem 2(6):587

    CAS  Article  Google Scholar 

  25. Campbell LK, Na BK, Ko EI (1992) Chem Mater 4:1329

    CAS  Article  Google Scholar 

  26. Knowles JA, Hudson MJ (1996) J Mater Chem 6:89

    Article  Google Scholar 

  27. Kim SH, Jung CH, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A 454:53

    CAS  Article  Google Scholar 

  28. Jung CH, Yun H, Qadir K, Naik B, Yun JY, Park JY (2014) Appl Catal B 154–155:171

    Article  Google Scholar 

  29. Paola AD, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637

    Article  Google Scholar 

  30. Teoh WY, Madler K, Beydoun D, Pratsinis SE, Amal R (2005) Chem Eng Sci 605:852

    Google Scholar 

  31. Cheng H, Selloni A (2009) J Chem Phys 131:054703

    Article  Google Scholar 

  32. Buchalska M, Kobielusz M, Matuszek A, Pacia M, Wojtyla S, Macyk W (2015) ACS Catal 5:7424

    CAS  Article  Google Scholar 

  33. Liang H, Li X (2009) J Hazard Mater 162:1415

    CAS  Article  Google Scholar 

  34. Wu M, Long J, Huang A, Luo Y (1999) Langmuir 15:8822

    CAS  Article  Google Scholar 

  35. Suh DJ, Park T (1996) Chem Mater 8:509

    CAS  Article  Google Scholar 

  36. Dorcheh AS, Abbasi MH (2008) J Mater Process Technol 199:10

    Article  Google Scholar 

  37. Lopez T, Espinoza KA, Kozina A, Castillo P, Silvestre-Albero A, Rodrigues-Reinoso F, Alexander-Katz R (2011) Langmuir 27:4004

    CAS  Article  Google Scholar 

  38. Yang H, Zhu W, Sun S, Guo X (2014) RSC Adv 4:32934

    CAS  Article  Google Scholar 

  39. Sun D, Yu C, Shao G, Dai H, Dong X, Ma Y, Dig (2014) J Nanomater Bios 9(4):1451

    Google Scholar 

  40. Alwin S, Shajan XS, Karuppasamy K, Warrier KGK (2017) Mater Chem Phys 196:37

    CAS  Article  Google Scholar 

  41. Zhang L, Liang Z. Yang K, Xia S, Wu Q, Zhang L, Zhang Y (2012) Anal Chim Acta 729:26

    CAS  Article  Google Scholar 

  42. Moon SY, Naik B, Jung C, Qadir K, Park JY (2016) Catal Today 265:245

    CAS  Article  Google Scholar 

  43. Rosenthal D (2011) Phys Status Solidi A 208:1217

    CAS  Article  Google Scholar 

  44. Hayden BE, Pletcher D, Suchsland JP, Williams LJ (2009) Phys Chem Chem Phys 11:1564

    CAS  Article  Google Scholar 

  45. Newton MA (2017) Catalysts 7:58

    Article  Google Scholar 

  46. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S (2006) J Catal 240:114

    CAS  Article  Google Scholar 

  47. Neuman S, Carlos A, Jean G, Martin S (2011) Catal Lett 141:1685

    Article  Google Scholar 

  48. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83

    CAS  Article  Google Scholar 

  49. Newton MA, Ferri D, Smoentsev G, Marchoionni V, Nachtegaal M (2015) Nat Commun 6:8675

    CAS  Article  Google Scholar 

  50. Rahim MHA, Armstrong RD, Hammond C, Dimitratos N, Freakley SJ, Forde MM, Morgan DJ, Lalev G, Jenkins RL, Lopes-Sanchez JA, Taylor SH, Hutchings GJ (2016) Catal Sci Technol 6:3410

    Article  Google Scholar 

  51. Zhang R, Liu N, Luo Z, Yang W, Liang X, Xu R, Chen B, Duprez D, Royer S (2014) ChemCatChem 6:2263

    CAS  Article  Google Scholar 

  52. Luttrell T, Halpegamage S, Tao J, Karmer A, Sutter A, Batzil M (2014) Sci Rep 4:4043

    Article  Google Scholar 

  53. Li N, Chen Q, Luo L, Juang W, Luo M, Hu G, Lu J (2013) Appl Catal B 142–143:523

    Article  Google Scholar 

  54. Qadir K, Kim SJ, Kim SM, Ha J, Park JY (2012) J Phys Chem C 116:24054

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) [IBS-R004-A2-2017-a00].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias M. Koebel or Jeong Young Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Carboni, M., Kim, Y.K. et al. Synthesis of High Surface Area TiO2 Aerogel Support with Pt Nanoparticle Catalyst and CO Oxidation Study. Catal Lett 148, 1504–1513 (2018). https://doi.org/10.1007/s10562-018-2355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2355-y

Keywords

  • Aerogel
  • TiO2
  • Pt nanoparticle
  • Heterogeneous catalyst
  • CO oxidation