Catalysis Letters

, Volume 148, Issue 5, pp 1504–1513 | Cite as

Synthesis of High Surface Area TiO2 Aerogel Support with Pt Nanoparticle Catalyst and CO Oxidation Study

  • Hanseul Choi
  • Michele Carboni
  • You Kyung Kim
  • Chan Ho Jung
  • Song Yi Moon
  • Matthias M. Koebel
  • Jeong Young Park


We demonstrate the preparation and catalytic testing of nanocatalysts composed of TiO2 synthesized in aerogel using a supercritical drying process with Pt nanoparticles deposited on the mesopore oxide surface. By controlling the aging time, we found conditions that led to TiO2 with a surface area among the highest ever reported for a TiO2 material in aerogel form (~ 685 m2 g− 1). The chosen synthesis route also features good control over the pore volume and pore size. Even though our aerogel TiO2 support showed an amorphous structure before calcination, 90.2% anatase and 9.8% rutile phases co-existed after calcination at 500 °C for 2 h with an average particle size of about 17 nm based on XRD results. The as-synthesized TiO2 and Pt/TiO2 were both used as catalysts for the CO oxidation reaction. Uncalcined Pt/TiO2 showed 100% conversion at 300 °C. After calcination, Pt/TiO2 exhibited a significantly higher catalytic activity, showing 100% conversion at 125 °C and an activation energy of only 13.4 kcal mol− 1. We show that TiO2 synthesized by the aerogel method can be an excellent support material for nanocatalysis because of its high surface area and facile and scalable synthesis.

Graphical Abstract


Aerogel TiO2 Pt nanoparticle Heterogeneous catalyst CO oxidation 



This work was supported by the Institute for Basic Science (IBS) [IBS-R004-A2-2017-a00].


  1. 1.
    Somorjai GA, Park JY (2008) Top Catal 49:126CrossRefGoogle Scholar
  2. 2.
    Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212CrossRefGoogle Scholar
  3. 3.
    Hamad S, Catlow CRA, Woodley SM (2005) J Phys Chem B 109(33):15741CrossRefGoogle Scholar
  4. 4.
    Hengerer R, Bolliger B, Erbudak M, Gratzel M (2000) Surf Sci 460:162CrossRefGoogle Scholar
  5. 5.
    Byranvand MM, Kharat AN, Fatholahi L, Beiranvand ZM (2013) J Nanostruct 3:1Google Scholar
  6. 6.
    Nowotny MK, Bak T, Nowotny J (2006) J Phys Chem B 110(33):16270CrossRefGoogle Scholar
  7. 7.
    Naik B, Kim SM, Jung CH, Moon SY, Kim SH, Park JY (2014) Adv Mater Interfaces 1:1300018CrossRefGoogle Scholar
  8. 8.
    Goddeti KC, Kim SM, Lee YK, Kim SH, Park JY (2014) Catal Lett 144:1411CrossRefGoogle Scholar
  9. 9.
    Puma GL, Bono A, Krishnaiah D, Collin JG (2008) J Hazard Mater 157:209CrossRefGoogle Scholar
  10. 10.
    Colon G, Hidalgo MC, Navio JA (2002) Catal Today 76:91CrossRefGoogle Scholar
  11. 11.
    Calleja G, Serrano DP, Sanz R, Pizzaro P, Garcia A (2004) Ind Eng Chem Res 43:2485CrossRefGoogle Scholar
  12. 12.
    Wang H, Chen J, Hy S, Yu L, Xu Z, Liu B (2014) Nanoscale 6:14926CrossRefGoogle Scholar
  13. 13.
    Jung H, Kang YS, Sun Y (2010) Electrochim Acta 55:4637CrossRefGoogle Scholar
  14. 14.
    Choquette-Labbe M, Shewa WA, Lalman JA, Shanmugam SR (2014) Water 6:1785CrossRefGoogle Scholar
  15. 15.
    Bazargan MH, Byranvand MM, Kharat AN (2012) Int J Mat Res 103:347CrossRefGoogle Scholar
  16. 16.
    Andersson M, Oesterlund L, Ljungstoem S, Palmqvist A (2002) J Phys Chem B 106:10674CrossRefGoogle Scholar
  17. 17.
    Wahi RK, Liu Y, Falkner JC, Colvin VL (2006) J Colloid Interf Sci 302:530CrossRefGoogle Scholar
  18. 18.
    Shinde PS, Bhosale CH (2008) J Anal Appl Pyrolysis 82:83CrossRefGoogle Scholar
  19. 19.
    Brinker CJ, Ashley CS, Cairncross RA, Chen KS, Hrd AJ, Reed ST, Samuel J, Schunk PR, Schwartz RW, Scotto SC (1996) Met Cer Prt Coat 17:112Google Scholar
  20. 20.
    Olding T, Sayer M, Barrow D (2001) Thin Solid Films 398–399:581CrossRefGoogle Scholar
  21. 21.
    Stocker C, Baiker A (1998) J Non Cryst Solids 223:165CrossRefGoogle Scholar
  22. 22.
    Schneider M, Baiker A (1997) Catal Today 35:339CrossRefGoogle Scholar
  23. 23.
    Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) J Phys Chem B 109(6):2192CrossRefGoogle Scholar
  24. 24.
    Schneider M, Baiker A (1992) J Mater Chem 2(6):587CrossRefGoogle Scholar
  25. 25.
    Campbell LK, Na BK, Ko EI (1992) Chem Mater 4:1329CrossRefGoogle Scholar
  26. 26.
    Knowles JA, Hudson MJ (1996) J Mater Chem 6:89CrossRefGoogle Scholar
  27. 27.
    Kim SH, Jung CH, Sahu N, Park D, Yun JY, Ha H, Park JY (2013) Appl Catal A 454:53CrossRefGoogle Scholar
  28. 28.
    Jung CH, Yun H, Qadir K, Naik B, Yun JY, Park JY (2014) Appl Catal B 154–155:171CrossRefGoogle Scholar
  29. 29.
    Paola AD, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) J Phys Chem B 106:637CrossRefGoogle Scholar
  30. 30.
    Teoh WY, Madler K, Beydoun D, Pratsinis SE, Amal R (2005) Chem Eng Sci 605:852Google Scholar
  31. 31.
    Cheng H, Selloni A (2009) J Chem Phys 131:054703CrossRefGoogle Scholar
  32. 32.
    Buchalska M, Kobielusz M, Matuszek A, Pacia M, Wojtyla S, Macyk W (2015) ACS Catal 5:7424CrossRefGoogle Scholar
  33. 33.
    Liang H, Li X (2009) J Hazard Mater 162:1415CrossRefGoogle Scholar
  34. 34.
    Wu M, Long J, Huang A, Luo Y (1999) Langmuir 15:8822CrossRefGoogle Scholar
  35. 35.
    Suh DJ, Park T (1996) Chem Mater 8:509CrossRefGoogle Scholar
  36. 36.
    Dorcheh AS, Abbasi MH (2008) J Mater Process Technol 199:10CrossRefGoogle Scholar
  37. 37.
    Lopez T, Espinoza KA, Kozina A, Castillo P, Silvestre-Albero A, Rodrigues-Reinoso F, Alexander-Katz R (2011) Langmuir 27:4004CrossRefGoogle Scholar
  38. 38.
    Yang H, Zhu W, Sun S, Guo X (2014) RSC Adv 4:32934CrossRefGoogle Scholar
  39. 39.
    Sun D, Yu C, Shao G, Dai H, Dong X, Ma Y, Dig (2014) J Nanomater Bios 9(4):1451Google Scholar
  40. 40.
    Alwin S, Shajan XS, Karuppasamy K, Warrier KGK (2017) Mater Chem Phys 196:37CrossRefGoogle Scholar
  41. 41.
    Zhang L, Liang Z. Yang K, Xia S, Wu Q, Zhang L, Zhang Y (2012) Anal Chim Acta 729:26CrossRefGoogle Scholar
  42. 42.
    Moon SY, Naik B, Jung C, Qadir K, Park JY (2016) Catal Today 265:245CrossRefGoogle Scholar
  43. 43.
    Rosenthal D (2011) Phys Status Solidi A 208:1217CrossRefGoogle Scholar
  44. 44.
    Hayden BE, Pletcher D, Suchsland JP, Williams LJ (2009) Phys Chem Chem Phys 11:1564CrossRefGoogle Scholar
  45. 45.
    Newton MA (2017) Catalysts 7:58CrossRefGoogle Scholar
  46. 46.
    Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S (2006) J Catal 240:114CrossRefGoogle Scholar
  47. 47.
    Neuman S, Carlos A, Jean G, Martin S (2011) Catal Lett 141:1685CrossRefGoogle Scholar
  48. 48.
    Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83CrossRefGoogle Scholar
  49. 49.
    Newton MA, Ferri D, Smoentsev G, Marchoionni V, Nachtegaal M (2015) Nat Commun 6:8675CrossRefGoogle Scholar
  50. 50.
    Rahim MHA, Armstrong RD, Hammond C, Dimitratos N, Freakley SJ, Forde MM, Morgan DJ, Lalev G, Jenkins RL, Lopes-Sanchez JA, Taylor SH, Hutchings GJ (2016) Catal Sci Technol 6:3410CrossRefGoogle Scholar
  51. 51.
    Zhang R, Liu N, Luo Z, Yang W, Liang X, Xu R, Chen B, Duprez D, Royer S (2014) ChemCatChem 6:2263CrossRefGoogle Scholar
  52. 52.
    Luttrell T, Halpegamage S, Tao J, Karmer A, Sutter A, Batzil M (2014) Sci Rep 4:4043CrossRefGoogle Scholar
  53. 53.
    Li N, Chen Q, Luo L, Juang W, Luo M, Hu G, Lu J (2013) Appl Catal B 142–143:523CrossRefGoogle Scholar
  54. 54.
    Qadir K, Kim SJ, Kim SM, Ha J, Park JY (2012) J Phys Chem C 116:24054CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hanseul Choi
    • 1
    • 2
  • Michele Carboni
    • 3
  • You Kyung Kim
    • 1
    • 2
  • Chan Ho Jung
    • 1
    • 2
  • Song Yi Moon
    • 1
    • 2
  • Matthias M. Koebel
    • 3
  • Jeong Young Park
    • 1
    • 2
  1. 1.Graduate School of EEWS, KAISTDaejeonRepublic of Korea
  2. 2.Center for Nanomaterials and Chemical ReactionsInstitute for Basic ScienceDaejeonRepublic of Korea
  3. 3.Building Energy Materials and Components LaboratorySwiss Federal Laboratories for Materials Science and Technology, EmpaDübendorfSwitzerland

Personalised recommendations