Solvent-Controlled Reactivity of Au/CeO2 Towards Hydrogenation of p-Chloronitrobenzene

Article
  • 42 Downloads

Abstract

The solvent effect on catalyst activity and selectivity for the hydrogenation of para-Chloronitrobenzene (p-CNB) over Au/CeO2 catalyst was investigated. Reaction over Au/CeO2 generated p-chloroaniline as the sole product, whereas the p-CNB hydrogenation rate extremely hinged on solvent via modification of apparent activation energy (Ea) and pre-exponential factor (A). The apparent activation energy and the pre-exponential factor in different solvents followed the order: ethanol > i-butanol > s-butanol > t-butanol > t-pentanol, which linearly correlated with the hydrogen bond donation ability of solvents. Moreover, the constable plot was firstly found in the solvent effect on supported gold catalyst. From the ATR-FTIR analysis, N–O bond in p-CNB was strongly affected by the solvents via hydrogen bond compared with the benzene ring and C–Cl bond, thereby weaken the adsorption of the p-CNB on Au catalyst, inducing the increment of activity of p-CNB hydrogenation. These findings could provide a criterion to compare the performance of various catalysts in different solvents and a guideline to designate an appropriate solvent.

Graphical Abstract

Keywords

Solvent effect Hydrogenation reaction Para-chloronitrobenzene Au catalyst Constable plot 

Notes

Acknowledgements

We acknowledge the financial support from the Fundamental Research Funds for the Central Universities (xjj2016113), the China Postdoctoral Science Foundation (2017M613143), the Natural Science Foundation of Shaanxi Province of China (2017JQ2016) and the National Natural Science Foundation of China (U1662117).

Supplementary material

10562_2018_2351_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1248 KB)

References

  1. 1.
    Pietrowski M (2012) Recent developments in heterogeneous selective hydrogenation of halogenated nitroaromatic compounds to halogenated anilines. Curr Org Synth 9(4):470–487CrossRefGoogle Scholar
  2. 2.
    Xu X, Li X, Cu H, Huang Z, Yan X (2012) A highly active and chemoselective assembled Pt/C(Fe) catalyst for hydrogenation of o-chloronitrobenzene. Appl Catal A: Gen 429:17–23CrossRefGoogle Scholar
  3. 3.
    Zhang S, Chang C-R, Huang Z-Q, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y (2016) High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J Am Chem Soc 138(8):2629–2637CrossRefGoogle Scholar
  4. 4.
    Luo P, Xu K, Zhang R, Huang L, Wang J, Xing W, Huang J (2012) Highly efficient and selective reduction of nitroarenes with hydrazine over supported rhodium nanoparticles. Catal Sci Technol 2(2):301–304CrossRefGoogle Scholar
  5. 5.
    Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313(5785):332–334CrossRefGoogle Scholar
  6. 6.
    He D, Shi H, Wu Y, Xu B-Q (2007) Synthesis of chloroanilines: selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green Chem 9(8):849–851CrossRefGoogle Scholar
  7. 7.
    Zhong R-Y, Sun K-Q, Hong Y-C, Xu B-Q (2014) Impacts of organic stabilizers on catalysis of Au nanoparticles from colloidal preparation. Acs Catal 4(11):3982–3993CrossRefGoogle Scholar
  8. 8.
    Blaser H-U, Steiner H, Studer M (2009) Selective catalytic hydrogenation of functionalized nitroarenes: an update. Chemcatchem 1(2):210–221CrossRefGoogle Scholar
  9. 9.
    Cardenas-Lizana F, Keane MA (2013) The development of gold catalysts for use in hydrogenation reactions. J Mate Sci 48(2):543–564CrossRefGoogle Scholar
  10. 10.
    Zhong R-Y, Yan X-H, Gao Z-K, Zhang R-J, Xu B-Q (2013) Stabilizer substitution and its effect on the hydrogenation catalysis by Au nanoparticles from colloidal synthesis. Catal Sci Technol 3(11):3013–3019CrossRefGoogle Scholar
  11. 11.
    Liu S-S, Liu X, Yu L, Liu Y-M, He H-Y, Cao Y (2014) Gold supported on titania for specific monohydrogenation of dinitroaromatics in the liquid phase. Green Chem 16(9):4162–4169CrossRefGoogle Scholar
  12. 12.
    Wu H, Huang X, Gao M, Liao X, Shi B (2011) Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chem 13(3):651–658CrossRefGoogle Scholar
  13. 13.
    Sun K-Q, Hong Y-C, Zhang G-R, Xu B-Q (2011) Synergy between Pt and Au in Pt-on-Au nanostructures for chemoselective hydrogenation catalysis. ACS Catal 1(10):1336–1346CrossRefGoogle Scholar
  14. 14.
    Cardenas-Lizana F, Gomez-Quero S, Hugon A, Delannoy L, Louis C, Keane MA (2009) Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J Catal 262(2):235–243CrossRefGoogle Scholar
  15. 15.
    He D, Jiao X, Jiang P, Wang J, Xu B-Q (2012) An exceptionally active and selective Pt-Au/TiO2 catalyst for hydrogenation of the nitro group in chloronitrobenzene. Green Chem 14(1):111–116CrossRefGoogle Scholar
  16. 16.
    Wang X, Perret N, Delgado JJ, Blanco G, Chen X, Olmos CM, Bernal S, Keane MA (2013) Reducible support effects in the gas phase hydrogenation of p-chloronitrobenzene over gold. J Phys Chem C 117(2):994–1005CrossRefGoogle Scholar
  17. 17.
    Perret N, Wang X, Onfroy T, Calers C, Keane MA (2014) Selectivity in the gas-phase hydrogenation of 4-nitrobenzaldehyde over supported Au catalysts. J Catal 309:333–342CrossRefGoogle Scholar
  18. 18.
    Wang X, Hao Y, Keane MA (2016) Selective gas phase hydrogenation of p-nitrobenzonitrile to p-aminobenzonitrile over zirconia supported gold. Appl Catal A: Gen 510:171–179CrossRefGoogle Scholar
  19. 19.
    Cardenas-Lizana F, Gomez-Quero S, Perret N, Keane MA (2011) Gold catalysis at the gas-solid interface: role of the support in determining activity and selectivity in the hydrogenation of m-dinitrobenzene. Catal Sci Technol 1(4):652–661CrossRefGoogle Scholar
  20. 20.
    Cheng H, Meng X, Yu Y, Zhao F (2013) The effect of water on the hydrogenation of o-chloronitrobenzene in ethanol, n-heptane and compressed carbon dioxide. Appl Catal A: Gen 455:8–15CrossRefGoogle Scholar
  21. 21.
    Ren B, Zhao M, Dong L, Li G (2014) Catalytic hydrogenation of 2,4-dinitroethylbenzene to 2,4-diaminoethylbenzene over Ni/HY catalysts: the solvent effect. Catal Commun 50:92–96CrossRefGoogle Scholar
  22. 22.
    Bertero NM, Trasarti AF, Apesteguia CR, Marchi AJ (2011) Solvent effect in the liquid-phase hydrogenation of acetophenone over Ni/SiO2: a comprehensive study of the phenomenon. Appl Catal A: Gen 394(1–2):228–238CrossRefGoogle Scholar
  23. 23.
    Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22(6):409–416CrossRefGoogle Scholar
  24. 24.
    Reichardt C (2007) Solvents and solvent effects: an introduction. Org Process Res Dev 11(1):105–113CrossRefGoogle Scholar
  25. 25.
    D’Agostino C, Brett GL, Miedziak PJ, Knight DW, Hutchings GJ, Gladden LF, Mantle MD (2012) Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chem: A Euro J 18(45):14426–14433CrossRefGoogle Scholar
  26. 26.
    Wang C, Jiang H, Chen CL, Chen R, Xing W (2015) Solvent effect on hydrogenolysis of glycerol to 1,2-propanediol over Cu-ZnO catalyst. Chem Eng J 264:344–350CrossRefGoogle Scholar
  27. 27.
    Cui J, Tan J, Deng T, Cui X, Zheng H, Zhu Y, Li Y (2015) Direct conversion of carbohydrates to gamma-valerolactone facilitated by a solvent effect. Green Chem 17(5):3084–3089CrossRefGoogle Scholar
  28. 28.
    Hinkle KR, Mathias PM, Murad S (2014) Evaluation and extrapolation of the solubility of H-2 and CO in n-alkanes and n-alcohols using molecular simulation. Fluid Phase Equilib 384:43–49CrossRefGoogle Scholar
  29. 29.
    Bond GC, Keane MK, Kral H, Lercher JA (2000) Comensation phenomena in heterogeneous catalysis: General principles and a possible explanation. Catal Rev: Sci Eng 42:323CrossRefGoogle Scholar
  30. 30.
    Conner WC Jr (1982) A general explanation for the compensation effect: the relationship between ∆S‡ and activation energy. J Catal 78:238CrossRefGoogle Scholar
  31. 31.
    Shimizu K-i, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: Mechanistic reasons of size- and support-dependent activity and selectivity. J Phys Chem C 113(41):17803–17810CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Industrial Catalysis, School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations