Advertisement

Catalysis Letters

, Volume 148, Issue 5, pp 1514–1524 | Cite as

A Facile and Convenient Route for Synthesis of Silver Biopolymer Gel Bead Nanocomposites by Different Approach Towards Immobilization and Its Catalytic Applications

  • S. Saran
  • G. Manjari
  • Suja P. Devipriya
Article

Abstract

Green synthesis of silver nanoparticles-calcium alginate beads (AgNP-CA) was prepared using five different methods. The immobilization/reduction/incorporation of AgNPs on alginate biopolymer using Walsura trifoliata bark extract as reducing and capping agent were confirmed by the characterization results of UV–Vis spectra, XRD, FTIR, and TEM techniques. The prepared Ag-CA nanocomposite catalyst was used for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of sodium borohydride (NaBH4) in a liquid phase at ambient conditions. Comparatively, AgNPs-ACA (Adsorption calcium alginate) exhibited very high catalytic activity in the reduction of 4-nitrophenol within few seconds with exceptional stability, up to ten cycles without any loss in the catalytic activity. This study reports effective synthesis of AgNPs on alginate polymer beads via phytochemicals of aqueous extract of W. trifoliata and its excellent catalytic efficiency towards 4-nitrophenol reduction as of the practical application.

Graphical Abstract

Keywords

Green synthesis Walsura trifoliata bark Ag-CA nanocomposite beads Catalysis 

Notes

Acknowledgements

The authors are thankful to Pondicherry University for providing University fellowship. The authors acknowledge central instrumentation facility, Pondicherry University and sophisticated analytical instrument facility, Cochin University for characterization analysis.

References

  1. 1.
    Chen D, Qu Z, Shen S, Li X, Shi Y, Wang Y, Fu Q, Wu J (2011) Catal Today 175(1):338–345CrossRefGoogle Scholar
  2. 2.
    Linic S, Aslam U, Boerigter C, Morabito M (2015) Nature Mater 14(6):567–576CrossRefGoogle Scholar
  3. 3.
    Chen S, Ju Y, Guo Y, Xiong C, Dong L (2017) J Nano Res 19(3):88CrossRefGoogle Scholar
  4. 4.
    Zhang X, Zhenping Q, Fangli YU, Yi WA (2013) Chinese J Catal 34(7):1277–1290CrossRefGoogle Scholar
  5. 5.
    Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) Environ Sci Poll Res 21(20):11781–11793CrossRefGoogle Scholar
  6. 6.
    Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Appl Catal B Environ 162:372–380CrossRefGoogle Scholar
  7. 7.
    Cui X, Zuo W, Tian M, Dong Z, Ma J (2016) J Mole Cat A: Chem 1(423):386 – 92CrossRefGoogle Scholar
  8. 8.
    Saran S, Manjari G, Devipriya SP (2017) J Clean Prod 423:386–392Google Scholar
  9. 9.
    Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z, Liu Y (2016) Nanoscale 8(21):11034–11043CrossRefGoogle Scholar
  10. 10.
    Sandoval A, Gómez-Cortés A, Zanella R, Díaz G, Saniger JM (2007) J Mol Catal A Chem 278(1):200–208CrossRefGoogle Scholar
  11. 11.
    Chunfa D, Xianglin Z, Hao C, Chuanliang C (2016) Rare Metal Mater Eng 45(2):261–266CrossRefGoogle Scholar
  12. 12.
    Zhao X, Li Q, Ma X, Quan F, Wang J, Xia Y (2015) J Ind Eng Chem 24:188–195CrossRefGoogle Scholar
  13. 13.
    Zhao XH, Li Q, Ma XM, Xiong Z, Quan FY, Xia YZ (2015) RSC Adv 5(61):49534–49540CrossRefGoogle Scholar
  14. 14.
    Valle-Orta M, Diaz D, Santiago-Jacinto P, Vázquez-Olmos A, Reguera E (2008) J Phys Chem B 112(46):14427–14434CrossRefGoogle Scholar
  15. 15.
    Lamsal RP, Jerkiewicz G, Beauchemin D (2016) Anal Chem 88(21):10552–10558CrossRefGoogle Scholar
  16. 16.
    Lu S, Yu J, Cheng Y, Wang Q, Barras A, Xu W, Szunerits S, Cornu D, Boukherroub R (2017) Appl Surf Sci 411:163–169CrossRefGoogle Scholar
  17. 17.
    Manjari G, Saran S, Arun T, Devipriya SP, Rao AV ((2017) J Cluster Sci 28(4):2041–2056CrossRefGoogle Scholar
  18. 18.
    Li Y, Du Q, Liu T, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Carbohydr Poly 95(1):501–507CrossRefGoogle Scholar
  19. 19.
    Bleve G, Lezzi C, Chiriatti MA, D’Ostuni I, Tristezza M, Di Venere D, Sergio L, Mita G, Grieco F (2011) Bioresour Technol 102(2):982–989CrossRefGoogle Scholar
  20. 20.
    Bezbaruah AN, Shanbhogue SS, Simsek S, Khan E (2011) J Nano Res 13(12):6673–6681CrossRefGoogle Scholar
  21. 21.
    Gao X, Zhang Y, Zhao Y (2017) Carbohydr Poly 59:108–115CrossRefGoogle Scholar
  22. 22.
    Mahmoodi NM, Hayati B, Arami M, Bahrami H (2011) Desalination 275(1):93–101CrossRefGoogle Scholar
  23. 23.
    Yan ZL, Liu YG, Tan XF, Liu SB, Zeng GM, Jiang LH, Li MF, Zhou Z, Liu S, Cai XX (2017) Chem Eng J 314:612–621CrossRefGoogle Scholar
  24. 24.
    Rao MS, Suresh G, Yadav PA, Prasad KR, Nayak VL, Ramakrishna S, Rao CV, Babu KS (2012) Tetrahedron Lett 53(46):6241–6244CrossRefGoogle Scholar
  25. 25.
    Mini JJ, Christhudas IV, Gajendran N (2015) Indian J Med Healthc 4:3–7Google Scholar
  26. 26.
    Saha S, Pal A, Kundu S, Basu S, Pal T (2009) Langmuir 26(4):2885–2893CrossRefGoogle Scholar
  27. 27.
    Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) J Agric Food Chem 57(14):6246–6252CrossRefGoogle Scholar
  28. 28.
    Mulvaney P (1996) Langmuir 12(3):788–800CrossRefGoogle Scholar
  29. 29.
    Lin S, Huang R, Cheng Y, Liu J, Lau BL, Wiesner MR (2013) Water Res 47(12):3959–3965CrossRefGoogle Scholar
  30. 30.
    Gangarapu M, Sarangapany S, Veerabhali KK, Devipriya SP, Arava VB (2017) J Cluster Sci 28(6):3127–3138CrossRefGoogle Scholar
  31. 31.
    Waghmode S, Chavan P, Kalyankar V, Dagade S (2013) J Chem.  https://doi.org/10.1155/2013/265864 Google Scholar
  32. 32.
    Umadevi M, Shalini S, Bindhu MR (2012) Adv Natural Sci Nanosci Nanotechnol 3(2):025008CrossRefGoogle Scholar
  33. 33.
    Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263CrossRefGoogle Scholar
  34. 34.
    Kumar B, Smita K, Cumbal L, Debut A (2015) Saudi J Bio Sci 24:45–50CrossRefGoogle Scholar
  35. 35.
    Cao E, Duan W, Wang F, Wang A, Zheng Y (2017) Carbohydr Poly 158:44–50CrossRefGoogle Scholar
  36. 36.
    Muthu K, Priya S (2017) Spectro chim Acta A Mol Biomol Spectrosc 179:66–72CrossRefGoogle Scholar
  37. 37.
    Velmurugan P, Shim J, Kim K, Oh BT (2016) Mater Lett 174:61–65CrossRefGoogle Scholar
  38. 38.
    Chitsazi MR, Korbekandi H, Asghari G, Bahri Najafi R, Badii A, Iravani S (2016) Artif Cells Nanomed Biotechnol 44(1):328–333CrossRefGoogle Scholar
  39. 39.
    Manjari G, Saran S, Arun T, Rao AV, Devipriya SP (2017) J Saudi Chem Soc 21(5):610–618CrossRefGoogle Scholar
  40. 40.
    Belloli R, Bolzacchini E, Clerici L, Rindone B, Sesana G, Librando V (2006) Environ Eng Sci 23(2):405–415CrossRefGoogle Scholar
  41. 41.
    Yi S, Zhuang WQ, Wu B, Tay ST, Tay JH (2006) Environ Sci Technol 40(7):2396–23401CrossRefGoogle Scholar
  42. 42.
    Tomei MC, Annesini MC, Luberti R, Cento G, Senia A (2003) Water Res 37(16):3803–3814CrossRefGoogle Scholar
  43. 43.
    Zhang K, Liu Y, Deng J, Xie S, Lin H, Zhao X, Yang J, Han Z, Dai H (2017) Appl Catal B Environ 202:569–579CrossRefGoogle Scholar
  44. 44.
    Gao S, Zhang Z, Liu K, Dong B (2016) Appl Catal B Environ 188:245–252CrossRefGoogle Scholar
  45. 45.
    Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y (2011) Chem Commun 47(13):3906–3908CrossRefGoogle Scholar
  46. 46.
    Huang C, Ye W, Liu Q, Qiu X (2014) ACS Appl Mater Interfaces 6:14469–14476CrossRefGoogle Scholar
  47. 47.
    Mei LP, Wang R, Song P, Feng JJ, Wang ZG, Chen JR, Wang AJ (2016) New J Chem 40(3):2315–2320CrossRefGoogle Scholar
  48. 48.
    Wang X, Liu D, Song S, Zhang H (2013) J Am Chem Soc 135(42):15864–15872CrossRefGoogle Scholar
  49. 49.
    Nasrollahzadeh M, Sajadi SM, Hatamifard A (2016) Appl Catal B Environ 191:209–227CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecology and Environmental SciencesPondicherry UniversityKalapetIndia

Personalised recommendations