Advertisement

Catalysis Letters

, Volume 148, Issue 5, pp 1375–1382 | Cite as

Single-Site CrO x Moieties on Silicalite: Highly Active and Stable for Ethane Dehydrogenation with CO2

  • Yanhu Cheng
  • Tianqi Lei
  • Changxi Miao
  • Weiming Hua
  • Yinghong Yue
  • Zi Gao
Article

Abstract

Silicalite-1 supported CrO x is highly active and stable for the ethane dehydrogenation with CO2, whose ethylene yield reached 37.8%, and only 9.5% of its initial activity was lost after 6 h, which can be attributed to the formation of single-site CrO x moieties embedded in the framework vacancy defects of zeolite. The strong interaction with silicalite-1 surface as well as the geometry isolation effect may account for the excellent activity and stability of single-site CrO x moieties.

Graphical Abstract

Keywords

Ethane dehydrogenation CrOx Single-site Silicalite-1 CO2 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91645201), the National Key R&D Program of China (2017YFB0602204) and the Science & Technology Commission of Shanghai Municipality (13DZ2275200).

Supplementary material

10562_2018_2348_MOESM1_ESM.docx (50 kb)
Supplementary material 1 (DOCX 49 KB)

References

  1. 1.
    Valente JS, Herrera HA, Solorzano RQ, Ángel P, Nava N, Masso A, Nieto JML (2014) ACS Catal 4:1292CrossRefGoogle Scholar
  2. 2.
    Zhu HB, Rosenfeld DC, Anjum DH, Sangaru SS, Saih Y, Chikh SO, Basset JM (2015) J Catal 329:291CrossRefGoogle Scholar
  3. 3.
    Wang SB, Zhu ZH (2004) Energy Fuels 18:1126CrossRefGoogle Scholar
  4. 4.
    Shishido T, Shimamura K, Teramura K, Tanaka T (2012) Catal Today 185:151CrossRefGoogle Scholar
  5. 5.
    Wang SB, Murata K, Hayakawa T, Hamakawa S, Suzuki K (2000) Appl Catal A 196:1CrossRefGoogle Scholar
  6. 6.
    Nakagawa K, Okamura M, Ikenaga N, Suzuki T, Kobayashi T (1998) Chem Commun 9:1025CrossRefGoogle Scholar
  7. 7.
    Baek J, Yun HJ, Yun D, Choi Y, Yi J (2012) ACS Catal 2:1893CrossRefGoogle Scholar
  8. 8.
    Michorczyk P, Ogonowski J, Zenczak K (2011) J Mol Catal A 349:1CrossRefGoogle Scholar
  9. 9.
    Liu LC, Li HQ, Zhang Y (2006) Catal Today 115:235CrossRefGoogle Scholar
  10. 10.
    Wang Y, Ohishi Y, Shishido T, Zhang QH, Yang W, Guo Q, Wan HL, Takehira K (2003) J Catal 220:347CrossRefGoogle Scholar
  11. 11.
    Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang QH, Wang Y (2004) J Catal 224:404CrossRefGoogle Scholar
  12. 12.
    Liu LC, Li HQ, Zhang Y (2006) J Phys Chem B 110:15478CrossRefGoogle Scholar
  13. 13.
    Mimura N, Okamoto M, Yamashita H, Oyama ST, Murata K (2006) J Phys Chem B 110:21764CrossRefGoogle Scholar
  14. 14.
    Cheng YH, Zhang F, Zhang Y, Miao CX, Hua WM, Yue YH, Gao Z (2015) Chin J Catal 36:1242CrossRefGoogle Scholar
  15. 15.
    Zhang F, Wu RX, Yue YH, Yang WM, Gu SY, Miao CX, Hua WM, Gao Z (2011) Microporous Mesoporous Mater 145:194CrossRefGoogle Scholar
  16. 16.
    Cheng YH, Miao CX, Hua WM, Yue YH, Gao Z (2017) Appl Catal A 532:111CrossRefGoogle Scholar
  17. 17.
    Kumar R, Mukherjee P, Pandey RK, Rajmohanan P, Bhaumik A (1998) Microporous Mesoporous Mater 22:23CrossRefGoogle Scholar
  18. 18.
    Cheng YH, Zhou LB, Xu JX, Miao CX, Hua WM, Yue YH, Gao Z (2016) Microporous Mesoporous Mater 234:370CrossRefGoogle Scholar
  19. 19.
    Hartmeyer G, Marichal C, Lebeau B, Rigolet S, Caullet P, Hernandez J (2007) J Phys Chem C 111:9066CrossRefGoogle Scholar
  20. 20.
    Benamor T, Michelin L, Lebeau B, Marichal C (2012) Microporous Mesoporous Mater 147:334CrossRefGoogle Scholar
  21. 21.
    Wang LF, Yang RT (2011) J Phys Chem C 115:21264CrossRefGoogle Scholar
  22. 22.
    Armaroli T, Simon LJ, Digne M, Montanari T, Bevilacqua M, Valtchev V, Patarin J, Busca G (2006) Appl Catal A 306:78CrossRefGoogle Scholar
  23. 23.
    Qin GL, Zheng L, Xie YM, Wu CC (1985) J Catal 95:609CrossRefGoogle Scholar
  24. 24.
    Habib S, Salamé P, Launay F, Herledan VS, Marie O, Zhao W, Tušar NN, Gédéon A (2007) J Mol Catal A 271:117CrossRefGoogle Scholar
  25. 25.
    Dessau RM, Schmitt KD, Kerr GT, Woolery GL, Alemany LB (1987) J Catal 104:484CrossRefGoogle Scholar
  26. 26.
    Zecchina A, Bordiga S, Spoto G, Marchese L, Petrini G, Leofanti G, Padovan M (1992) J Phys Chem 96:4985CrossRefGoogle Scholar
  27. 27.
    Zecchina A, Bordiga S, Spoto G, Marcbese L, Petrid G, Leofanti G, Padovan M (1992) J Phys Chem 96:4991CrossRefGoogle Scholar
  28. 28.
    Heitmann GP, Dahlhoff G, HÖlderich WF (1999) J Catal 186:12CrossRefGoogle Scholar
  29. 29.
    Spoto G, Bordiga S, Garrone E, Ghiotti G, Zecchina A (1992) J Mol Catal 74:175CrossRefGoogle Scholar
  30. 30.
    Gao J, Zheng YT, Tang YD, Jehng JM, Grybos R, Handzlik J, Wachs IE, Podkolzin SG (2015) ACS Catal 5:3078CrossRefGoogle Scholar
  31. 31.
    Ayari F, Mhamdi M, Álvarez-Rodríguez J, Guerrero Ruiz AR, Delahay G, Ghorbel A (2013) Appl Catal B 134–135:367CrossRefGoogle Scholar
  32. 32.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327CrossRefGoogle Scholar
  33. 33.
    Zhao XH, Wang XL (2010) Catal Lett 135:233CrossRefGoogle Scholar
  34. 34.
    Janas J, Gurgul J, Socha RP, Kowalska J, Nowinska K, Shishido T, Che M, Dzwigaj S (2009) J Phys Chem C 113:13273CrossRefGoogle Scholar
  35. 35.
    Zhang K, Lively RP, Noel JD, Dose ME, McCool BA, Chance RR, Koros WJ (2012) Langmuir 28:8664CrossRefGoogle Scholar
  36. 36.
    Dzwigaj S, Shishido T (2008) J Phys Chem C 112:5803CrossRefGoogle Scholar
  37. 37.
    Hardcastle FD, Wachs IE (1988) J Mol Catal 46:173CrossRefGoogle Scholar
  38. 38.
    Kim D, Tatibouet JM, Wachs IE (1992) J Catal 136:209CrossRefGoogle Scholar
  39. 39.
    Kumar MS, Hammer N, Rønning M, Holmen A, Chen D, Walmsley JC, Øye G (2009) J Catal 261:116CrossRefGoogle Scholar
  40. 40.
    Hamdy MS, Mul G (2015) Appl Catal B 174–175:413CrossRefGoogle Scholar
  41. 41.
    Weckhuysen BM, Bensalem A, Schoonheydt RA (1998) J Chem Soc Faraday Trans 94:2011Google Scholar
  42. 42.
    Zhu ZD, Hartmann M, Maes EM, Czernuszewicz RS, Kevan L (2000) J Phys Chem B 104:4690CrossRefGoogle Scholar
  43. 43.
    Davydov L, Reddy EP, France P, Smirniotis PG (2001) J Catal 203:157CrossRefGoogle Scholar
  44. 44.
    Mears DE (1971) Ind Eng Chem Process Des Dev 10:541CrossRefGoogle Scholar
  45. 45.
    Oyama ST, Zhang XM, Lu JQ, Gu YF, Fujitani T (2008) J Catal 257:1CrossRefGoogle Scholar
  46. 46.
    Kyriienkoa PI, Larina OV, Popovych NO, Soloviev SO, Millot Y, Dzwigaj S (2016) J Mol Catal A 424:27CrossRefGoogle Scholar
  47. 47.
    Srebowata A, Baran R, Łomot D, Lisovytskiy D, Onfroy T, Dzwigaj S (2014) Appl Catal B 147:208CrossRefGoogle Scholar
  48. 48.
    Baran R, Grzybek T. Onfroy T, Dzwigaj S (2016) Microporous Mesoporous Mater 226:104CrossRefGoogle Scholar
  49. 49.
    Kocemba I, Rynkowski J, Gurgul J, Socha RP, Łatka K, Krafft JM, Dzwigajd S (2016) Appl Catal A 519:16CrossRefGoogle Scholar
  50. 50.
    Perez-Ramirez J, Gallardo-Llamas A (2005) Appl Catal A 279:117CrossRefGoogle Scholar
  51. 51.
    Chakrabarti A, Wachs IE (2015) Catal Lett 145:985CrossRefGoogle Scholar
  52. 52.
    Marth MS, Aun AW, Curry-Hyde HE, Baiker A (1992) J Catal 133:415CrossRefGoogle Scholar
  53. 53.
    Dines TJ, Inglis S (2003) Phys Chem Chem Phys 5:1320–1328CrossRefGoogle Scholar
  54. 54.
    Lee EL, Wachs IE (2007) J Phys Chem C 111:14410CrossRefGoogle Scholar
  55. 55.
    Moisii C, Deguns EW, Lita A, Callahan SD, van de Burgt LJ, Magana D, Stiegman AE (2006) Chem Mater 18:3965CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yanhu Cheng
    • 1
  • Tianqi Lei
    • 1
  • Changxi Miao
    • 2
  • Weiming Hua
    • 1
  • Yinghong Yue
    • 1
  • Zi Gao
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Research Institute of Petrochemical TechnologyShanghaiPeople’s Republic of China

Personalised recommendations