Catalysis Letters

, Volume 148, Issue 4, pp 1047–1054 | Cite as

A Study of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol Over Pt–WOx/C

  • Cong Wang
  • Jennifer D. Lee
  • Yichen Ji
  • Tzia Ming Onn
  • Jing Luo
  • Christopher B. Murray
  • Raymond J. Gorte


The hydrogenolysis of tetrahydrofurfural alcohol to 1,5-pentanediol was studied over a series of carbon-supported metal/metal-oxide pairs. In agreement with previous reports, specific pairs, especially Pt and Ir paired with WOx, MoOx and ReOx, exhibited high activity and selectivity, even though the individual components were not active or selective. Only reducible oxides produced selective catalysts. A more comprehensive study of the Pt–WOx system indicated that the active form of the catalyst exists as a thin, submonolayer film of the oxide on the Pt surface. This film could be formed by atomic layer deposition (ALD) of W(CO)6 onto the Pt nanocrystals and STEM–EDS mapping demonstrated that ALD deposition occurred selectively on the Pt. When the catalyst was formed by impregnation of Pt and W salts, the WOx was mobile and able to move onto the Pt. The implications of these result for preparing selective catalysts are discussed.

Graphical Abstract


Hydrogenolysis Tetrahydrofurfuryl alcohol 1,5-Pentanediol Pt–WOx/C Atomic layer deposition 



We acknowledge support from the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award no. DE-SC0001004. J.D.L acknowledge the support from the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by ORAU under Contract Number DE-SC0014664.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no financial or other conflicts of interest regarding this work.

Supplementary material

10562_2018_2323_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4390 KB)


  1. 1.
    Schniepp L, Geller H (1946) Preparation of dihydropyran, δ-hydroxyvaleraldehyde and 1, 5-pentanediol from tetrahydrofurfuryl alcohol. J Am Chem Soc 68:1646–1648CrossRefGoogle Scholar
  2. 2.
    Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem Commun. Google Scholar
  3. 3.
    Chia M, Pagán-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc 133:12675–12689CrossRefGoogle Scholar
  4. 4.
    Buntara T, Melián-Cabrera I, Tan Q, Fierro JLG, Neurock M, de Vries JG, Heeres HJ (2013) Catalyst studies on the ring opening of tetrahydrofuran–dimethanol to 1,2,6-hexanetriol. Catal Today 210:106–116CrossRefGoogle Scholar
  5. 5.
    Dias EL, Shoemaker JAW, Boussie TR, Murphy VJ (2014) Process for production of hexamethylenediamine from carbohydrate-containing materials and intermediates thereof. US 13/739,975Google Scholar
  6. 6.
    Allgeier AM, Corbin DR, De Silva WIN, Korovessi E, Menning CA, Ritter JC, Sengupta SK (2014) Process for preparing 1, 6-hexanediol. US 13/729,494Google Scholar
  7. 7.
    Sokolovskii V, Lavrenko M, Hagemeyer A, Dias EL, Shoemaker JA, Murphy VJ (2016) Process for production of hexanetriol from 5-hydroxymethylfurfural. US 14/957,551Google Scholar
  8. 8.
    Feng S, Nagao A, Aihara T, Miura H, Shishido T (2017) Selective hydrogenolysis of tetrahydrofurfuryl alcohol on Pt/WO3/ZrO2 catalysts: effect of WO3 loading amount on activity. Catal Today. Google Scholar
  9. 9.
    Koso S, Nakagawa Y, Tomishige K (2011) Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. J Catal 280:221–229CrossRefGoogle Scholar
  10. 10.
    Koso S, Watanabe H, Okumura K, Nakagawa Y, Tomishige K (2012) Comparative study of Rh–MoOx and Rh–ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Appl Catal B Environ 111–112:27–37CrossRefGoogle Scholar
  11. 11.
    Chen K, Mori K, Watanabe H, Nakagawa Y, Tomishige K (2012) C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. J Catal 294:171–183CrossRefGoogle Scholar
  12. 12.
    Pholjaroen B, Li N, Huang Y, Li L, Wang A, Zhang T (2015) Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catal Today 245:93–99CrossRefGoogle Scholar
  13. 13.
    Guan J, Peng G, Cao Q, Mu X (2014) Role of MoO3 on a rhodium catalyst in the selective hydrogenolysis of biomass-derived tetrahydrofurfuryl alcohol into 1,5-pentanediol. J Phys Chem C 118:25555–25566CrossRefGoogle Scholar
  14. 14.
    Juskelis MV, Slanga JP, Roberie TG, Peters AW (1992) A comparison of CaO, Beta, and a dealuminated Y by ammonia TPD and by temperature programmed 2-propylamine cracking. J Catal 138:391–394CrossRefGoogle Scholar
  15. 15.
    Luo J, Yun H, Mironenko AV, Goulas K, Lee JD, Monai M, Wang C, Vorotnikov V, Murray CB, Vlachos DG, Fornasiero P, Gorte RJ (2016) Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals. ACS Catal 6:4095–4104Google Scholar
  16. 16.
    Onn TM, Arroyo-Ramirez L, Monai M, Oh T-S, Talati M, Fornasiero P, Gorte RJ, Khader MM (2016) Modification of Pd/CeO2 catalyst by atomic layer deposition of ZrO2. Appl Catal B Environ 197:280–285CrossRefGoogle Scholar
  17. 17.
    Onn TM, Zhang S, Arroyo-Ramirez L, Xia Y, Wang C, Pan X, Graham GW, Gorte RJ (2017) High-surface-area ceria prepared by ALD on Al2O3 support. Appl Catal B Environ 201:430–437CrossRefGoogle Scholar
  18. 18.
    Luo J, Arroyo-Ramírez L, Gorte RJ, Tzoulaki D, Vlachos DG (2015) Hydrodeoxygenation of HMF over Pt/C in a continuous flow reactor. AIChE J 61:590–597CrossRefGoogle Scholar
  19. 19.
    Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386CrossRefGoogle Scholar
  20. 20.
    Li W, Chi K, Liu H, Ma H, Qu W, Wang C, Lv G, Tian Z (2017) Skeletal isomerization of n-pentane: a comparative study on catalytic properties of Pt/WOx–ZrO2 and Pt/ZSM-22. Appl Catal Gen 537:59–65CrossRefGoogle Scholar
  21. 21.
    Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143CrossRefGoogle Scholar
  22. 22.
    Santiesteban J, Calabro D, Borghard W, Chang C, Vartuli J, Tsao Y, Natal-Santiago M, Bastian R (1999) H-spillover and SMSI effects in paraffin hydroisomerization over Pt/WOx/ZrO2 bifunctional catalysts. J Catal 183:314–322CrossRefGoogle Scholar
  23. 23.
    Zhang S, Plessow PN, Willis JJ, Dai S, Xu M, Graham GW, Cargnello M, Abild-Pedersen F, Pan X (2016) Dynamical observation and detailed description of catalysts under strong metal–support interaction. Nano Lett 16:4528–4534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cong Wang
    • 1
  • Jennifer D. Lee
    • 2
  • Yichen Ji
    • 1
  • Tzia Ming Onn
    • 1
  • Jing Luo
    • 1
  • Christopher B. Murray
    • 2
    • 3
  • Raymond J. Gorte
    • 1
    • 3
  1. 1.Department of Chemical & Biomolecular EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations