Skip to main content
Log in

Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, we delineated the structural properties and catalytic behavior of nanocrystalline Fe3O4@Urocanic acid(UA)–Cu magnetically recyclable nanocatalyst (MRCs) which was produced via hydrothermal route. Here, Urocanic acid (UA) used as a linker to attach Cu nanoparticles and stabilized the iron oxide. Structural properties were examined through Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDX). Moreover, thermal and magnetic properties of MRCs were completed using thermal gravimetry (TG) and vibrating sample magnetometry (VSM) respectively. Moreover, the catalytic studies of product were recorded by UV–Vis absorption spectrophotometer for azo dyes and aromatic nitro compounds. The synthesized MRCs was found as an efficient nanocatalyst and magnetically recyclable from the reaction medium without significantly loss in its catalytic activity. Fe3O4@UA-Cu MRCs can be considered for the treatment of industrial dyes pollutants and organic contaminants from wastewater.

Graphical Abstract

Proposed mechanism of photocatalysis degradation of dye by Fe3O4@UA-Cu MRCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11

Similar content being viewed by others

References

  1. Booth G (2005) Nitro compounds, aromatic. In: Chadwick SS (ed), Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Wu X, Wu W, Huang Q et al (2015) Appl Sur Sci 331:210

    Article  CAS  Google Scholar 

  3. Kurtan U Amir Md, Baykal A (2015). Chin J Catal 36:705

    Article  CAS  Google Scholar 

  4. Arora P, Sasikala C, Ramana C (2012) Appl Microbiol Biotechnol 93:2265

    Article  CAS  Google Scholar 

  5. Luan F, Xie L, Li J et al (2013) Chemosphere 91:1035

  6. Chang Y, Chen D (2009) J Hazard Mater 165:664

    Article  CAS  Google Scholar 

  7. Padmapriya G, Manikandan A, Krishnasamy V et al (2016) J Mol Struc 1119:39

    Article  CAS  Google Scholar 

  8. Josephine B, Manikandan A, Teresita V et al (2016). Korean J Chem Eng 33:1590

    Article  CAS  Google Scholar 

  9. Feng J, Su L, Ma Y et al (2013) Chem Eng J 221:16

    Article  CAS  Google Scholar 

  10. Tripathy N, Ahmad R, Song J et al (2014) Mater Lett 136:171

    Article  CAS  Google Scholar 

  11. Salem I (2000) Transition Met Chem 25:599

    Article  CAS  Google Scholar 

  12. Fu J, Kyzas G (2014) Chin J Catal 35:1

    Article  Google Scholar 

  13. Maruthamani D, Vadivel S, Kumaravel M et al (2017) J Coll Inter Sci 498:449

    Article  CAS  Google Scholar 

  14. Padmapriya G, Manikandan A, Krishnasamy V et al (2016) J Superconductivity and novel. Magnetism 29:2141

    CAS  Google Scholar 

  15. Shameem A, Devendran P, Siva V et al (2017) J Inorg Organomet Polym Mater 27:692

    Article  CAS  Google Scholar 

  16. Asadullah M, Asaduzzaman M, Kabir M et al (2010) J Hazard Mater 174:437

    Article  CAS  Google Scholar 

  17. Chen W, Lu W, Yao Y et al (2007) Environ Sci Technol 41:6240

    Article  CAS  Google Scholar 

  18. Tasaki T, Wada T, Fujimoto K et al (2009) J Hazard Mater 162:1103

    Article  CAS  Google Scholar 

  19. Vidhu V, Philip D (2014) Micron 56:54

    Article  CAS  Google Scholar 

  20. Lin C, Gung C, Sun J et al (2014) J Membr Sci 471:285

    Article  CAS  Google Scholar 

  21. Mishra A, Arockiadoss T, Ramaprabhu S (2010) Chem Eng J 162:1026

    Article  CAS  Google Scholar 

  22. Lazaridis N, Kyzas G, Vassiliou A. et al (2007) Langmuir 23:7634

    Article  CAS  Google Scholar 

  23. Xu Y, Zhou M, Geng H et al (2012) Appl Surf Sci 258:3897

    Article  CAS  Google Scholar 

  24. Amir Md, Kurtan U, Baykal A (2015) J Ind Eng Chem 27:347

    Article  Google Scholar 

  25. Manikandan A, Kennedy L, Mary J et al (2014) J Ind Eng Chem 20:2077

    Article  CAS  Google Scholar 

  26. Amir Md, Ünal B, Shirsath S et al (2015) Superlattice Microst 85:747

    Article  Google Scholar 

  27. Kurtan U, Amir Md, Baykal A et al (2016) Appl Surf Sci 363:66

    Article  CAS  Google Scholar 

  28. Amir Md, Kurtan U, Baykal A (2015) Chin J Catal 36:1280

    Article  Google Scholar 

  29. Kurtan U, Onus E, Amir Md et al (2015) J Inorg Organomet Polym 25:1120

    Article  CAS  Google Scholar 

  30. Nascimento A, Caires F, Gomes D et al (2014) Thermochim Acta 575:212

    Article  Google Scholar 

  31. Kurtan U, Baykal A et al (2014) Mater Res Bull 60:79

    Article  CAS  Google Scholar 

  32. Junejo Y, Baykal A (2014) Turk J Chem 38:765

    Article  CAS  Google Scholar 

  33. Zhang X, Jiang W, Gong X et al (2010) J Alloys Compd 508:400

    Article  CAS  Google Scholar 

  34. Naik B, Prasad V, Ghosh N (2012) Powder Technol 232:1

    Article  CAS  Google Scholar 

  35. Sun L, He J, An S et al (2013) J Catal 34:1378

    CAS  Google Scholar 

  36. El-Deen A, Askalany A, Halaoui R et al. J Mol Struc 1036:161

  37. Mostafa S (2007) Transition Met Chem 32:769

    Article  CAS  Google Scholar 

  38. Inomata Y, Arai Y, Yamakoshi T et al (2004) Inorg Biochem 98:2149

    Article  CAS  Google Scholar 

  39. Kurtan U, Onuş E, Amir Md et al (2015) J Inorg Organomet Polym 25:1120

    Article  CAS  Google Scholar 

  40. Kurtan U, Amir Md, Baykal A, Sözeri H, Toprak M et al (2016) J Nanosci Nanotechnol 16:2548

    Article  CAS  Google Scholar 

  41. Kurtan U, Baykal A, Amir Md. et al (2016) Appl Surf Sci 76:16

    Article  Google Scholar 

  42. Sinha A, Basu M, Sarkar S et al (2013) J Colloid Interface Sci 398:13

    Article  CAS  Google Scholar 

  43. Mathubala G, Manikandan A, Antony S et al (2016) J Mol Struc 1113:79

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Scientific Research Projects Coordination Unit of Istanbul University. Authors sincerely acknowledge with deep gratitude to Assist. Prof. Aylin Yıldız for providing us the important SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Amir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, M.A., Amir, M., Asiri, S.M. et al. Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst. Catal Lett 148, 1130–1141 (2018). https://doi.org/10.1007/s10562-018-2322-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2322-7

Keywords

Navigation