Advertisement

Catalysis Letters

, Volume 148, Issue 4, pp 1124–1129 | Cite as

Tuning Catalytic Selectivity in Cascade Reactions by Light Irradiation

  • Xingguang Zhang
  • Jianfeng Yao
  • Xuebin Ke
Article

Abstract

Selectivity of cascade redox reactions: the reduction of nitrobenzene to azoxybenzene and then to azobenzene and the oxidation of benzyl alcohol to benzaldehyde and then to benzoic acid, is discovered to be tuneable via light irradiation over plasmonic gold photocatalysts. The representative photocatalyst of Au/CeO2 was characterized by TEM, EDX, UV–Vis and XPS to determine its morphology, elemental composition, photo absorptivity and oxidation state of gold. The catalytic test results demonstrate that the net contribution of light irradiation correlates with the ability of incident light to excite electrons and light absorption of catalysts. These findings may inspire peer researchers in developing new photocatalytic processes or in designing new photocatalysts for clean chemicals synthesis.

Graphical Abstract

Keywords

Photocatalysis Nanoparticles Aromatic compounds Selectivity regulation Plasmonic effect 

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (NNSFC 21706134), the Young Natural Science Foundation of Jiangsu province (BK20170918) and Natural Science Key Project of the Jiangsu Higher Education Institutions (15KJA220001) for financial support.

References

  1. 1.
    Smit B, Maesen TLM (2008) Nature 451:671–678CrossRefGoogle Scholar
  2. 2.
    Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072–1133CrossRefGoogle Scholar
  3. 3.
    Sun J, Karim AM, Li XS, Rainbolt J, Kovarik L, Shin Y, Wang Y (2015) Chem Commun 51:16617–16620CrossRefGoogle Scholar
  4. 4.
    Faisca Phillips AM, Pombeiro AJL, Kopylovich MN (2017) ChemCatChem 9:217–246CrossRefGoogle Scholar
  5. 5.
    Fan J, De bruyn M, Budarin VL, Gronnow MJ, Shuttleworth PS, Breeden S, Macquarrie DJ, Clark JH (2013) J Am Chem Soc 135:11728–11731CrossRefGoogle Scholar
  6. 6.
    Tomás RAF, Bordado JCM, Gomes JFP (2013) Chem Rev 113:7421–7469CrossRefGoogle Scholar
  7. 7.
    Zhang X, Wilson K, Lee AF (2016) Chem Rev 116:12328–12368CrossRefGoogle Scholar
  8. 8.
    Parlett CMA, Isaacs MA, Beaumont SK, Bingham LM, Hondow NS, Wilson K, Lee AF (2016) Nat Mater 15:178–182CrossRefGoogle Scholar
  9. 9.
    Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS (2017) Chem Rev 117:1445–1514CrossRefGoogle Scholar
  10. 10.
    Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) Science 326:1250–1252CrossRefGoogle Scholar
  11. 11.
    Kappe CO, Pieber B, Dallinger D (2013) Angew Chem Int Ed 52:1088–1094CrossRefGoogle Scholar
  12. 12.
    Baig RBN, Varma RS (2012) Chem Soc Rev 41:1559–1584CrossRefGoogle Scholar
  13. 13.
    Qu Y, Duan X (2013) Chem Soc Rev 42:2568–2580CrossRefGoogle Scholar
  14. 14.
    Zhu H, Ke X, Yang X, Sarina S, Liu H (2010) Angew Chem 122:9851–9855CrossRefGoogle Scholar
  15. 15.
    Marimuthu A, Zhang J, Linic S (2013) Science 339:1590–1593CrossRefGoogle Scholar
  16. 16.
    Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H (2013) Chem Commun 49:2551–2553CrossRefGoogle Scholar
  17. 17.
    Yang X-J, Chen B, Zheng L-Q, Wu L-Z, Tung C-H (2014) Green Chem 16:1082–1086CrossRefGoogle Scholar
  18. 18.
    Wang F, Li C, Chen H, Jiang R, Sun L-D, Li Q, Wang J, Yu JC, Yan C-H (2013) J Am Chem Soc 135:5588–5601CrossRefGoogle Scholar
  19. 19.
    Liu L, Ouyang S, Ye J (2013) Angew Chem Int Ed 52:6689–6693CrossRefGoogle Scholar
  20. 20.
    Ke X, Sarina S, Zhao J, Zhang X, Chang J, Zhu H (2012) Chem Commun 48:3509–3511CrossRefGoogle Scholar
  21. 21.
    Linic S, Christopher P, Ingram DB (2011) Nat Mater 10:911–921CrossRefGoogle Scholar
  22. 22.
    Christopher P, Xin H, Marimuthu A, Linic S (2012) Nat Mater 11:1044–1050CrossRefGoogle Scholar
  23. 23.
    Ueno K, Misawa H (2013) J Photochem Photobiol C 15:31–52CrossRefGoogle Scholar
  24. 24.
    Zhang X, Ke X, Zhu H (2012) Chem Eur J 18:8048–8056CrossRefGoogle Scholar
  25. 25.
    Zhang X, Du A, Zhu H, Jia J, Wang J, Ke X (2014) Chem Commun 50:13893–13895CrossRefGoogle Scholar
  26. 26.
    Zhang X, Ke X, Yao J (2018) J Mater Chem A 6:1941–1966CrossRefGoogle Scholar
  27. 27.
    Sankar M, Nowicka E, Carter E, Murphy DM, Knight DW, Bethell D, Hutchings GJ (2014) Nat Commun 5:3332CrossRefGoogle Scholar
  28. 28.
    Grirrane A, Corma A, García H (2008) Science 322:1661–1664CrossRefGoogle Scholar
  29. 29.
    Takenaka Y, Kiyosu T, Choi J-C, Sakakura T, Yasuda H (2009) Green Chem 11:1385–1390CrossRefGoogle Scholar
  30. 30.
    Corma A, Concepción P, Serna P (2007) Angew Chem Int Ed 46:7266–7269CrossRefGoogle Scholar
  31. 31.
    Grirrane A, Corma A, Garcia H (2010) Nat Protocols 11:429–438CrossRefGoogle Scholar
  32. 32.
    Ke X, Zhang X, Zhao J, Sarina S, Barry J, Zhu H (2013) Green Chem 15:236–244CrossRefGoogle Scholar
  33. 33.
    Khatri OP, Murase K, Sugimura H (2008) Langmuir 24:3787–3793CrossRefGoogle Scholar
  34. 34.
    Zhang X, Ke X, Du A, Zhu H (2014) Sci Rep 4:3805CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest BiomassNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.School of Engineering and Computer ScienceUniversity of HullHullUK

Personalised recommendations