Advertisement

Catalysis Letters

, Volume 148, Issue 4, pp 1150–1161 | Cite as

Kinetic and Mechanisms of the Aqueous-Biphasic Hydroformylation of Olefins Contained in Naphtha Cuts Catalyzed by RhH(CO)(TPPTS)3 [TPPTS: Tri(sodium m-sulfonated-phenyl)phosphine]

  • P. J. Baricelli
  • María Modroño Alonso
  • Merlín Rosales
Article
  • 104 Downloads

Abstract

A kinetic study of the individual olefins present in naphtha, their mixture (synthetic naphtha) and the olefins present in a real naphtha was carried out using RhH(CO)(TPPTS)3 [TPPTS: tri(sodium m-sulfonated-phenyl)phosphine] as the catalyst precursor in aqueous-biphasic medium (toluene/water or naphtha/water), under mild reaction conditions: 80 °C, 800 psi (55.4 atm) and 600 rpm. The study consisted in the characterization of real naphtha, the selection of the model olefins, the preparation of synthetic naphtha, followed by hydroformylation of the individual olefins, of the olefin mixture and of a real naphtha cut. For 1-hexene aqueous-biphasic reaction, a kinetic study based on initial rate method showed a first order dependence on catalyst, substrate and dissolved hydrogen concentrations, whereas a fractional order was observed for carbon monoxide concentration. This kinetic results are in accord with the traditional hydroformylation mechanism, the hydrogenolysis of rhodium-acyl species being the rate-determining step of the cycle. From all the reaction profiles, it was corroborated by using the integral method that the dependence with respect to the olefin concentration was of first order for the aqueous-biphasic hydroformylation of individual olefins and their mixture, as well as for the olefins present in real naphtha cut. These results are important because of knowing the kinetics and mechanisms of the hydroformylation of the olefins present in naphtha, it is possible to improve the activity of the precatalyst and/or to design new ones for this type of application, i.e. the improving of the fuel quality through the green technology of aqueous-biphasic catalysis.

Graphical Abstract

A kinetic study of the individual olefins present in naphthas, their mixture (synthetic naphtha) and the olefins present in a real naphtha was carried out in aqueous-biphasic medium using RhH(CO)(TPPTS)3 [TPPTS = tri(sodium m-sulfonated-phenyl)phosphine] as the catalyst precursor in a aqueous-biphasic media, under mild reaction conditions: 80 °C, 800 psi (55.4 atm) and 600 rpm. The kinetic results are in accord with the traditional hydroformylation mechanism.

Keywords

Aqueous-biphasic hydroformylation Olefins Naphtha Rhodium Kinetics 

Notes

Acknowledgements

We thank FONACIT (Caracas) for financial support through the Project F-97003766, CONIPET Project 97-003777 and CODECIH-UC Project 94017. We are thankful to Red Iberoamericana de Ciencia y Tecnología Para el Desarrollo, CYTED, Project V.9 and the Universidad de Carabobo for permitting the publication of this work.

References

  1. 1.
    Bhaduri S, Mukesh D (2014) Homogeneous catalysis: mechanisms and industrial applications. Wiley, Nueva York, pp 141–150Google Scholar
  2. 2.
    Cornils B, Herrmann WA (2002) Applied homogeneous catalysis with organometallic compounds. Wiley, WeinheimCrossRefGoogle Scholar
  3. 3.
    He D, Pang D, Wang T, Chen Y, Liu Y, Liu J (2001) J Mol Catal A 174:21–28CrossRefGoogle Scholar
  4. 4.
    California Air Resources Board, The California Reformulated Gasoline Regulations, Title 13, California Code of Regulations., Sect 2250-2273.5 Reflecting Amendments Effective August 29, 2008Google Scholar
  5. 5.
    American Society for Testing and Materials (ASTM): ASTM D6550-15 (2015) Standard test method for determination of olefin content of gasoline by supercitical-fluid chromatography. http://www.astm.org/Standards/D6550.htm. Accessed 6 Oct 2017
  6. 6.
    Joó F (2001) Aqueous organometallic catalysis. In: James B, van Leeuwen PWNM (ed) Catalysis by metal complexes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. 7.
    Baricelli P, Lujano E, Rodríguez M, Fuentes A, Sánchez-Delgado R (2004) Appl Catal A 263:187–191CrossRefGoogle Scholar
  8. 8.
    Baricelli PJ, Lujano E, Modroño M, Marrero AC, Garcia YM, Fuentes A, Sanchez-Delgado RA (2004) J Organomet Chem 689:3782–3792CrossRefGoogle Scholar
  9. 9.
    Guanipa VJ, Melean LG, Modroño-Alonso M, Gonzalez A, Rosales M, Lopez-Linares F, Baricelli PJ (2009) Appl Catal A 358:21–214CrossRefGoogle Scholar
  10. 10.
    Modroño-Alonso M, Guanipa VJ, Melean LG, Rosales M, Gonzalez A, Baricelli PJ (2009) Appl Catal A 358:211–214CrossRefGoogle Scholar
  11. 11.
    Melean LG, Rivera S, Guanipa VJ, Modroño-Alonso M, Gonzalez A, Rosales M, Baricelli PJ (2011) Hydrocarb World 6:12–15Google Scholar
  12. 12.
    Rosales M, Baricelli PJ, González A (2012) Ciencia 20:73–85Google Scholar
  13. 13.
    Baricelli P, Melean LG, Modroño-Alonso M, Rodriguez A, Rosales M, González A (2014) Catal Today 247:124 131Google Scholar
  14. 14.
    Kokkinos NC, Lazaridou A, Nikolaou N, Papadogianakis G, Psaroudakis N, Chatzigakis AK, Papadopoulus CE (2009) Appl Catal A 363:129–134CrossRefGoogle Scholar
  15. 15.
    Kokinnos NC, Kazou E, Lazaridou A, Papadopoulos CE, Psaroudakis N, Mertis K, Nikolaou N (2013) Fuel 104:275–283CrossRefGoogle Scholar
  16. 16.
    Kokkinos NC, Nikolaou N, Psaroudakis N, Mertis K, Mitkidou S Mitropoulos ACh (2015) Catal Today 247:132–138CrossRefGoogle Scholar
  17. 17.
    De C, Saha R, Ghosh SK, Ghosh A, Mukherjee K, Bhattaharyya SS, Saha B (2013) Res Chem Intermed 39:3463–3474CrossRefGoogle Scholar
  18. 18.
    Cavalieri d’Oro P, Raimondi L, Pagani G, Montrasi G, Gregorio G, Andreeta A, Chim (1982) Ind (Milan) 62:572Google Scholar
  19. 19.
    Deshpande RM, Chaudhari RV (1988) Ind Eng Chem Res 27:1996–2002CrossRefGoogle Scholar
  20. 20.
    Deshpande RM, Divekar SS, Bhanage BM, Chadhuri RV (1992) J Mol Catal 77:L13–L17CrossRefGoogle Scholar
  21. 21.
    Divekar SS, Deshpande RM, Chaudhari RV (1993) Catal Lett 21:191–196CrossRefGoogle Scholar
  22. 22.
    Bhanage BM, Divekar SS, Deshpande RM, Chaudhari RV (1997) J Mol Catal A 115:247–257CrossRefGoogle Scholar
  23. 23.
    Kiss G, Mozeleski EJ, Nadler KC, Van Driessche E, De Roover C (1999) J Mol Catal A 138:155–176CrossRefGoogle Scholar
  24. 24.
    Van Leeuwen PCJ, Claver C (2000) Rhodium Catalyzed Hydroformylation. Kluwer Academic Publisher, DordrechtGoogle Scholar
  25. 25.
    Rio I, Pamies O, van Leeuwen PWNM., Claver C (2000) J Organomet Chem 608:115–121CrossRefGoogle Scholar
  26. 26.
    Rosales M, Gonzalez A, Guerrero Y, Pacheco I, Sanchez-Delgado RA (2007) J Mol Catal A 270:241–249CrossRefGoogle Scholar
  27. 27.
    Rosales M, Chacón G, Baricelli PJ, González A, Pacheco I (2008) J Mol Catal A 287:110–114CrossRefGoogle Scholar
  28. 28.
    Kurtz E (1987) Homogeneous catalysis in water. Chemtech 17:570–575Google Scholar
  29. 29.
    Arhencet JP, Davis ME, Merola JS, Hanson BE (1990) J Catal 121:327–339CrossRefGoogle Scholar
  30. 30.
    Casado J, López-Quintela MA, Lorenzo-Barral FM (1986) J Chem Educ 63:450–455CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. J. Baricelli
    • 1
  • María Modroño Alonso
    • 1
  • Merlín Rosales
    • 2
  1. 1.Centro de Investigaciones Químicas, Facultad de IngenieríaUniversidad de CaraboboValenciaVenezuela
  2. 2.Laboratorio de Química Inorgánica (LQI), Departamento de Química, Facultad Experimental de CienciasUniversidad del Zulia (L.U.Z.)MaracaiboVenezuela

Personalised recommendations