Catalysis Letters

, Volume 148, Issue 4, pp 1110–1123 | Cite as

Ruthenium Nanoparticles Immobilized on Nano-silica Functionalized with Thiol-Based Dendrimer: A Nanocomposite Material for Oxidation of Alcohols and Epoxidation of Alkenes

  • Sara Haghshenas Kashani
  • Majid Moghadam
  • Shahram Tangestaninejad
  • Valiollah Mirkhani
  • Iraj Mohammadpoor-Baltork


In this work, ruthenium nanoparticles were immobilized on thiol-based dendrimer functionalized nano-silica and its catalytic activity was investigated in the oxidation reactions. To do this, silica nanoparticles were functionalized with a thiol-based dendrimer, and this dendritic material was used as a host for immobilization of ruthenium nanoparticles as guest species. Different analytical tools such as FT–IR and UV–vis spectroscopies, CHNS, ICP and TGA analyses, and TEM and SEM microscopic techniques were used to characterize the prepared catalyst. The catalytic activity of this nanocomposite material as a heterogeneous catalyst was studied in the epoxidation of alkenes and oxidation of alcohols with tert-butyl hydroperoxide (tert-BuOOH) and the corresponding products were obtained in good to excellent yields. Moreover, this catalyst can be well-dispersed in the reaction medium, conveniently separated from the reaction mixture, and reused several times without significant loss of its activity.

Graphical Abstract

Runp–nSTDP provided a highly stable, active, reusable, and solid-phase catalyst for preparation of a series of epoxides and aldehydes.


Ruthenium nanoparticles Thiolated dendrimer Reusable catalyst Nanocomposite Oxidation reaction 



The authors are grateful to the Research Council of the University of Isfahan for financial support of this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2018_2313_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1462 KB)


  1. 1.
    Antonels NC, Meijboom R (2013) Preparation of well defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4‑nitrophenol according to the Langmuir–Hinshelwood approach. Langmuir 29:13433–13442CrossRefGoogle Scholar
  2. 2.
    Migowski P, Dupont J (2007) Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem Eur J 13:32–39CrossRefGoogle Scholar
  3. 3.
    Schmid G (2010) In: Ed.: Schmid G in Nanoparticles from theory to applications, second completely revised and updated edition. Wiley, Weinheim, p 217CrossRefGoogle Scholar
  4. 4.
    Mourdikoudis S, Liz–Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476CrossRefGoogle Scholar
  5. 5.
    Niu Y, Crooks RM (2003) Dendrimer–encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059CrossRefGoogle Scholar
  6. 6.
    Crooks RM, Zhao M, Sun L et al (2001) Dendrimer–encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190CrossRefGoogle Scholar
  7. 7.
    Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–16‎‏88CrossRefGoogle Scholar
  8. 8.
    Myers VS, Weir MG, Carino EV et al (2011) Dendrimer–encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–16‎‏46CrossRefGoogle Scholar
  9. 9.
    Sheldon RM, van Bekkum H (2001) Eds., Fine chemicals through heterogeneous catalysis. Wiley–VCH, WeinheimGoogle Scholar
  10. 10.
    Technical data sheet, Chemical Divisions, 1997Google Scholar
  11. 11.
    Bilenko V, Jiao H, Spannenberg A et al (2007) A New target for highly stereoselective Katsuki–Sharpless epoxidation–one–pot synthesis of C 2-symmetric 2,2-bioxiranes. Eur J Org Chem 5:758–767CrossRefGoogle Scholar
  12. 12.
    Kureshy RI, Khan N‎‎‏UH, Abdi SHR et al (2001) Enantioselective epoxidation of non–‎‏functionalised alkenes using a urea–hydrogen peroxide oxidant and a dimeric homochiral Mn(III)–‎‏Schiff base complex catalyst. Tetrahedron: Asymm 12:433–437CrossRefGoogle Scholar
  13. 13.
    Kureshy RI, Khan NH, Abdi SHR et al (1993) Asymmetric epoxidation of styrene by novel chiral Ruttmium(II) Schiff Base complexes, synthesis and characterization. Tetrahedron Asymm 4:1693–1701CrossRefGoogle Scholar
  14. 14.
    Ethaler S, Junge K, Beller M (2008) Sustainable metal catalysis with iron: from rust to a rising star? Angew Chem Int Ed 47:3317–3321CrossRefGoogle Scholar
  15. 15.
    Liu W‎‏S, Zhang R, Huang JS et al (2001) Synthesis and X-ray crystal structure of a chiral molybdenum porphyrin and its catalytic behaviour toward asymmetric epoxidation of aromatic alkenes. J Organomet Chem 634:34–38CrossRefGoogle Scholar
  16. 16.
    Bolm C, Kühn T (2000) Asymmetric epoxidation of allylic alcohols using vanadium complexes of (N)–hydroxy–[2.2]paracyclophane–4–carboxylic amides. Synlett 9:899–901Google Scholar
  17. 17.
    Bousquet C, Gilheany DG (1995) Chromium catalysed asymmetric alkene epoxidation. Greater selectivity for an E-alkene versus its Z-isomer. Tetrahedron Lett 36:7739–7742CrossRefGoogle Scholar
  18. 18.
    Romero MD, Calles JA, Ocaña MA et al (2008) Epoxidation of cyclohexene over basic mixed oxides derived from hydrotalcite materials: Activating agent, solvent and catalyst reutilization. Microporous Mesoporous Mater 111:243–253CrossRefGoogle Scholar
  19. 19.
    Jiang J, Ma K, Zheng Y et al (2009) Cobalt salophen complex immobilized into montmorillonite as catalyst for the epoxidation of cyclohexene by air. Appl Clay Sci 45:117–122CrossRefGoogle Scholar
  20. 20.
    Dong Z, Le X, Li X et al (2014) Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl Catal B: Environ 158–159:129–135CrossRefGoogle Scholar
  21. 21.
    Le X, Dong Z, Li X et al (2015) Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal Commun 59:21–25CrossRefGoogle Scholar
  22. 22.
    Dhiman M, Chalke B, Polshettiwar V (2015) Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis. ACS Sustain Chem Eng 3:3224–3230CrossRefGoogle Scholar
  23. 23.
    Das SK, Khan Md MR, Guha AK et al (2013) Bio-inspired fabrication of silver nanoparticles on nanostructured silica: characterization and application as a highly efficient hydrogenation catalyst. Green Chem 15:2548–2557CrossRefGoogle Scholar
  24. 24.
    Tojo G, Fernandez M (2006) Oxidation of alcohols to aldehydes and ketones. Springer New YorkGoogle Scholar
  25. 25.
    Shinde VM, Skupien E, Makkee M (2015) Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes for their excellent catalytic performance for oxidation of benzyl alcohol. Catal Sci Technol 5:4144–4153CrossRefGoogle Scholar
  26. 26.
    Ventura–Espinosa D, Vicent C, Bayac M et al (2016) Ruthenium molecular complexes immobilized on graphene as active catalysts for the synthesis of carboxylic acids from alcohol dehydrogenation. Catal Sci Technol 6:8024–8035CrossRefGoogle Scholar
  27. 27.
    Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206CrossRefGoogle Scholar
  28. 28.
    Sheldon RA, Arends IWCE., Dijksman A (2000) New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal Today 57:157–166CrossRefGoogle Scholar
  29. 29.
    Allen SE, Walvoord RR, Padilla–Salinas R et al (2013) Aerobic copper-catalyzed organic reactions. Chem Rev 113:6234–6458CrossRefGoogle Scholar
  30. 30.
    Sheldon RA, Arends IWCE., Ten BGJ et al (2002) Green, catalytic oxidations of alcohols. Acc Chem Res 35:774–781CrossRefGoogle Scholar
  31. 31.
    Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681–703CrossRefGoogle Scholar
  32. 32.
    Sigman MS, Jensen DR (2006) Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. Acc Chem Res 39:221–229CrossRefGoogle Scholar
  33. 33.
    Ryland BL, Stahl SS (2014) Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew Chem Int Ed Engl 53:8824–8838CrossRefGoogle Scholar
  34. 34.
    Liang ZX, Zhao TS (2012) Catalysts for alcohol-fuelled direct oxidation fuel cells. RSC, CambridgeCrossRefGoogle Scholar
  35. 35.
    Trincado M, Banerjee D, Grutzmacher H (2014) Molecular catalysts for hydrogen production from alcohols. Energy Environ Sci 7:2464–2503CrossRefGoogle Scholar
  36. 36.
    Ho CM, Yu WY, Che CM (2004) Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable catalyst for cis–dihydroxylation and oxidative cleavage of alkenes. Angew Chem 116:3365–3369CrossRefGoogle Scholar
  37. 37.
    Na Y, Park S, Han SB et al (2004) Ruthenium-catalyzed heck-type olefination and Suzuki coupling reactions: studies on the nature of catalytic species. J Am Chem Soc 126:250–258CrossRefGoogle Scholar
  38. 38.
    Nasir Baig RB, Varma RS (2012) A facile one–pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides. Chem Commun 48:6220–6222CrossRefGoogle Scholar
  39. 39.
    Sun B, Khan FA, Vallat A et al (2013) NanoRu@hectorite: A heterogeneous catalyst with switchable selectivity for the hydrogenation of quinolone. Appl Catal A: Gen 467:310–314CrossRefGoogle Scholar
  40. 40.
    Carrillo AI, Schmidt LC, Marínab ML et al (2014) Mild synthesis of mesoporous silica supported ruthenium nanoparticles as heterogeneous catalysts in oxidative Wittig coupling reactions. Catal Sci Technol 4:435–440CrossRefGoogle Scholar
  41. 41.
    Niu M, Wang Y, Li W et al (2013) Highly efficient and recyclable ruthenium nanoparticle catalyst for semihydrogenation of alkynes. Catal Commun 38:77–81CrossRefGoogle Scholar
  42. 42.
    Toubiana J, Sasson Y (2012) The true catalyst in hydrogen transfer reactions with alcohol donors in the presence of RuCl2(PPh3)3 is ruthenium(0) nanoparticles. Catal Sci Technol 2:1644–1653CrossRefGoogle Scholar
  43. 43.
    Gopiraman M, Babu SG, Khatri Z et al (2013) Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. J Phys Chem C 117:23582–23596CrossRefGoogle Scholar
  44. 44.
    Daneshvar A, Moghadam M, Tangestaninejad S et al (2016) Ruthenium hydride complex supported on gold nanoparticle cored triazine dendrimers for C–C coupling reactions. Organometallics 35:1747–1755CrossRefGoogle Scholar
  45. 45.
    Asadi B, Mohammadpoor-Baltork I, Tangestaninejad S et al (2016) Synthesis and characterization of Bi(III) immobilized on triazine dendrimer-stabilized magnetic nanoparticles: A reusable catalyst for synthesis of aminonaphthoquinones and bisaminonaphthoquinones. New J Chem 40:6171–6184CrossRefGoogle Scholar
  46. 46.
    Landarani Isfahani A, Mohammadpoor-Baltork I, Mirkhani V et al (2014) Pd nanoparticles immobilized on nanosilica triazine dendritic polymer: a reusable catalyst for the synthesis of mono-, di-, and trialkynylaromatics by Sonogashira cross-coupling in water. Eur J Org Chem 2014: 5603–5609Google Scholar
  47. 47.
    Landarani Isfahani A, Mohammadpoor-Baltork I, Mirkhani V et al (2014) Palladium nanoparticles immobilized on nanosilica triazine dendritic polymer (Pdnp–nSTDP) as catalyst in the synthesis of mono-, di-, and trisulfides through C–S cross-coupling reactions. Synlett 25:645–652CrossRefGoogle Scholar
  48. 48.
    Mohammadpoor-Baltork I, Moghadam M, Nasr-Esfahani M et al (2014) Copper immobilized on nano–silica triazine dendrimer (Cu(II)–TD@nSiO2) catalyzed synthesis of symmetrical and unsymmetrical 1,3-diynes under aerobic conditions at ambient temperature. RSC Adv 4:14291–14296CrossRefGoogle Scholar
  49. 49.
    Nasr-Esfahani M, Mohammadpoor-Baltork I, Khosropour AR et al (2014) Copper immobilized on nanosilica triazine dendrimer (Cu(II)–TD@nSiO2) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles and bis- and tris-triazoles via a one-pot multicomponent click reaction. J Org Chem 79:1437–1443CrossRefGoogle Scholar
  50. 50.
    Landarani Isfahani A, Mohammadpoor-Baltork I, Mirkhani V et al (2013) Palladium nanoparticles immobilized on nano–silica triazine dendritic polymer (Pdnp-nSTDP): an efficient and reusable catalyst for Suzuki–Miyaura cross-coupling and heck reactions. Adv Synth Catal 355:957–972CrossRefGoogle Scholar
  51. 51.
    Zakeri M, Moghadam M, Mirkhani V et al (2016) Synthesis and characterization of a host (a new thiol based dendritic polymer)–guest (Pd nanoparticles) nanocomposite material: an efficient and reusable catalyst for C–C coupling reactions. RSC Adv 6:104608–104619CrossRefGoogle Scholar
  52. 52.
    Sen S, Sen F, Gokagac G (2011) Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys Chem Chem Phys 13:6784–6792CrossRefGoogle Scholar
  53. 53.
    Zhan BZ, White MA, Sham TK et al (2003) Zeolite-confined nano-RuO2: a green, selective, and efficient catalyst for aerobic alcohol oxidation. J Am Chem Soc 125:2195–2199CrossRefGoogle Scholar
  54. 54.
    Mori K, Kanai S, Hara T et al (2007) Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic γ-Fe2O3 nanocrystallites as an efficient oxidation catalyst by molecular oxygen. Chem Mater 19:1249–1256CrossRefGoogle Scholar
  55. 55.
    Yang X, Wang X, Qiu J (2010) Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets. Appl Catal A: Gen 382:131–137CrossRefGoogle Scholar
  56. 56.
    Makgwane PR, Ray SS (2013) Nanosized ruthenium particles decorated carbon nanofibers as active catalysts for the oxidation of p-cymene by molecular oxygen. J Mol Catal A 373:1–11CrossRefGoogle Scholar
  57. 57.
    Das P, Aggarwal N, Guha NR (2013) Solid supported Ru(0) nanoparticles: an efficient ligand-free heterogeneous catalyst for aerobic oxidation of benzylic and allylic alcohol to carbonyl. Tetrahedron Lett 54:2924–2928CrossRefGoogle Scholar
  58. 58.
    Chakroune N, Viau G, Ammar S et al (2005) Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies. Langmuir 21:6788–6796CrossRefGoogle Scholar
  59. 59.
    Gopinath K, Karthika V, Gowri S et al (2014) Antibacterial activity of ruthenium nanoparticles synthesized using Gloriosa superba L. leaf extract. J Nanostruct Chem 4:83CrossRefGoogle Scholar
  60. 60.
    Yan X, Liu H, Liew KY (2001) Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction. J Mater Chem 11:3387–3391CrossRefGoogle Scholar
  61. 61.
    Hakeem A, Duan R, Zahid F et al (2014) Dual stimuli-responsive nano-vehicle for controlled drug delivery: mesoporous silica nanoparticles end-capped with natural chitosan. Chem Commun 50:13268–13271CrossRefGoogle Scholar
  62. 62.
    van der Waal JC, van Bekkum H Rigutto MS (1998) Zeolite titanium beta as a selective catalyst in the epoxidation of bulky alkenes. Appl Catal A 167:331–342CrossRefGoogle Scholar
  63. 63.
    Moosavifar M, Tangestaninejad S, Moghadam M et al (2013) Host (nanocavity of zeolite Y)-guest (ruthenium(III) salophen complex)nanocomposite materials: An efficient and reusable catalyst for shape-selectiveepoxidation of linear alkenes with sodium periodate. J Mol Catal A: Chem 377:92–101CrossRefGoogle Scholar
  64. 64.
    Hatefi M, Moghadam M, Sheikhshoaei I et al (2009) Ru(salophen)Cl supported on polystyrene-bound imidazole: An efficient and robust heterogeneous catalyst for epoxidation of alkenes with sodium periodate. Appl Catal A: Gen 370:66–71CrossRefGoogle Scholar
  65. 65.
    Hatefi M, Moghadam M, Mirkhani V et al (2010) Silica supported Ru(salophen)Cl: An efficient and robust heterogeneous catalyst for epoxidation of alkenes with sodium periodate. Polyhedron 29:2953–2958CrossRefGoogle Scholar
  66. 66.
    Moghadam M, Mirkhani V, Tangestaninejad S et al (2011) Highly efficient epoxidation of alkenes with sodium periodate catalyzed by reusable polystyrene-bound ruthenium(III) salophen. J Iran Chem Soc 8:1019–1029CrossRefGoogle Scholar
  67. 67.
    Sakthivel A, Zhao J, Raudaschl–Sieber G et al (2005) Heterogenization of chiral molybdenum(VI) dioxo complexes on mesoporous materials and their application in catalysis. Appl Catal A: Gen 281:267–273CrossRefGoogle Scholar
  68. 68.
    Cox PA, Goodenough JB, Tavener PJ, et al (1986) The electronic structure of Bi2−xGdxRu2O7 and RuO2: a study by electron spectroscopy. J Solid State Chem 62:360–3‎‏70CrossRefGoogle Scholar
  69. 69.
    Sánchez-Mendieta V, Morales-Luckie RA, García-Tobón P et al (2008) An aqueous-phase synthetic route for ruthenium nanoparticles in cellulose nitrate fibers. Mater Lett 62:2063–2066CrossRefGoogle Scholar
  70. 70.
    Wagner CD, Muilenberg GE, Riggs WM et al (1979) Handbook of x-ray photoelectron spectroscopy; physical electronic division, vol 55. Perkin-Elmer WalthamGoogle Scholar
  71. 71.
    Yang J, Deivaraj TC, Too HP et al (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20:4241–4245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Catalysis DivisionUniversity of IsfahanIsfahanIran

Personalised recommendations