Catalysis Letters

, Volume 148, Issue 3, pp 992–1002 | Cite as

Interfacial Engineering of NiMo/Mesoporous TiO2 Catalyst with Carbon for Enhanced Hydrodesulfurization Performance

  • Licheng LiEmail author
  • Hainqin Yue
  • Shanshan Chen
  • Liangliang Huang
  • Xiaobao Li
  • Zhuhong Yang
  • Xiaohua Lu


1 and 5 wt% initial introduced contents of carbon (denoted as 1C/TiO2 and 5C/TiO2, respectively) were used to engineer the interfacial properties of mesoporous TiO2 for studying its hydrodesulfurization (HDS). The physical structure, surface properties and dispersion state of active species of samples were characterized by various technologies. The results showed that there was no obvious difference in physical structure of supports and catalysts before and after interfacial engineering. The carbon species formed on the surface of 1C/TiO2 was only graphitic carbon, whereas that of 5C/TiO2 was composed of mixed graphitic carbon and amorphous carbon. H2S-TPD results displayed that H2S adsorption–desorption behavior was mainly influenced by the different states of carbon species: H2S easily desorbed from 1C/TiO2 surface but strongly adsorbed on 5C/TiO2 surface. This was because H2S had a strong adsorption on amorphous carbon, but a weak one with the graphitic carbon. Sulfided active species were well formed in both 1C/TiO2 and 5C/TiO2 supported catalysts. The dibenzothiophene (DBT) conversion was increased to 98% on the 1C/TiO2 supported catalyst, but was decreased to 50% on the 5C/TiO2 supported catalyst, significantly different from the conversion of the pristine TiO2 supported catalyst (65%). It was found that the H2S adsorption–desorption behavior was closely related to the kind of interfacial carbon, which further influenced the HDS performance of mesoporous TiO2-supported HDS catalyst.

Graphical Abstract


Hydrodesulfurization TiO2 Adsorption–desorption Interfacial engineering Carbon 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 21406118, 21136004, 91334202), the State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201702), Priority Academic Program Development of Jiangsu Higher Education Institutions.


  1. 1.
    Ramirez J, Cedeño L, Busca G (1999) J Catal 184:59CrossRefGoogle Scholar
  2. 2.
    Ramirez J, Macias G, Cedeno L, Gutierrez-Alejandre A, Cuevas R, Castillo P (2004) Catal Today 98:19CrossRefGoogle Scholar
  3. 3.
    Toledo-Antonio J, Cortés-Jácome M, Angeles-Chávez C, Escobar J, Barrera M, López-Salinas E (2009) Appl Catal B 90:213CrossRefGoogle Scholar
  4. 4.
    Sun Y, Prins R (2008) Angew Chem Int Ed 47:8478CrossRefGoogle Scholar
  5. 5.
    Oyama ST (2003) J Catal 216:343CrossRefGoogle Scholar
  6. 6.
    Oyama ST (1996) Introduction to the chemistry of transition metal carbides and nitrides. In: The chemistry of transition metal carbides and nitrides. Springer, Dordrecht, pp 1–27Google Scholar
  7. 7.
    Pecoraro T, Chianelli R (1981) J Catal 67:430CrossRefGoogle Scholar
  8. 8.
    Inoue S, Muto A, Kudou H, Ono T (2004) Appl Catal A 269:7CrossRefGoogle Scholar
  9. 9.
    Cortés-Jácome M, Escobar J, Chávez CA, López-Salinas E, Romero E, Ferrat G, J Toledo-Antonio (2008) Catal Today 130:56CrossRefGoogle Scholar
  10. 10.
    Dzwigaj S, Louis C, Breysse M, Cattenot M, Bellière V, Geantet C, Vrinat M, Blanchard P, Payen E, Inoue S (2003) Appl Catal B 41:181CrossRefGoogle Scholar
  11. 11.
    Chen T, Yang B, Li S, Wang K, Jiang X, Zhang Y, He G (2011) Ind Eng Chem Res 50:11043CrossRefGoogle Scholar
  12. 12.
    Maity S, Ancheyta J, Soberanis L, Alonso F, Llanos M (2003) Appl Catal A 244:141CrossRefGoogle Scholar
  13. 13.
    Schacht P, Ramirez S, Ancheyta J (2009) Energy Fuel 234:860Google Scholar
  14. 14.
    Chen SS, Zhu YH, Li W, Liu WJ, Li LC, Yang ZH, Liu C, Yao WJ, Lu XH, Feng X (2012) Chin J Catal 31:605CrossRefGoogle Scholar
  15. 15.
    Li W, Liu C, Zhou YX, Bai Y, Feng X, Yang ZH, Lu LH, Lu XH, Chan KY (2008) J Phys Chem C 112:20539CrossRefGoogle Scholar
  16. 16.
    Zhuang W, Lu L, Wu X, Jin W, Meng M, Zhu Y, Lu X (2013) Electrochem Commun 27:124–127CrossRefGoogle Scholar
  17. 17.
    Li LC, Zhu YD, Lu XH, Wei MJ, Zhuang W, Yang ZH, Feng X (2012) Chem Commun 48:11525CrossRefGoogle Scholar
  18. 18.
    Tauster S, Fung S, Garten R (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  19. 19.
    Wei MJ, Zhou J, Lu X, Zhu Y, Liu W, Lu L, Zhang L (2011) Fluid Phase Equilib 302:316CrossRefGoogle Scholar
  20. 20.
    Lu L, Quan X, Dong Y, Yu G, Xie W, Zhou J, Li L, Lu X, Zhu Y (2015) Chapter two—surface structure and interaction of surface/interface probed by mesoscale simulations and experiments. Adv Chem Eng 47:85–162Google Scholar
  21. 21.
    Maity SK, Flores L, Ancheyta J, Fukuyama H (2009) Ind Eng Chem Res 48:1190CrossRefGoogle Scholar
  22. 22.
    Nikulshin PA, Salnikov VA, Varakin AN, Kogan VM (2016) Catal Today 271:45CrossRefGoogle Scholar
  23. 23.
    Maity SK, Ancheyta J (2010) Catal Today 150:231CrossRefGoogle Scholar
  24. 24.
    Nikulshin PA, Salnikov VA, Mozhaev AV, Minaev PP, Kogan VM, Pimerzin AA (2014) J Catal 309:386CrossRefGoogle Scholar
  25. 25.
    Cui F, Li GC, Li XB, Lu MH, Li MS (2015) Catal Sci Technol 5:549CrossRefGoogle Scholar
  26. 26.
    He M, Lu XH, Feng X, Yu L, Yang ZH (2004) Chem Commun 2202Google Scholar
  27. 27.
    Liu B, Zeng HC (2008) Chem Mater 20:2711–2718CrossRefGoogle Scholar
  28. 28.
    Guangshe L, Liping L, Juliana BG, Woodfield BF (2005) J Am Chem Soc 127:8659CrossRefGoogle Scholar
  29. 29.
    Eklund P, Holden J, Jishi R (1995) Carbon 33:959CrossRefGoogle Scholar
  30. 30.
    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S (2006) Phys. Rev. Lett 97:187401CrossRefGoogle Scholar
  31. 31.
    Wei MJ, Zhang LZ, Lu LH, Zhu YD, Gubbins KE, Lu XH (2012) Phys Chem Chem Phys 14:16536CrossRefGoogle Scholar
  32. 32.
    Chen X, Farber M, Gao Y, Kulaots I, Suuberg EM, Hurt RH (2003) Carbon 41:1489CrossRefGoogle Scholar
  33. 33.
    Morgado E, Zotin JL, de Abreu MA, de Oliveira D, Rosas PM, Jardim BA, Marinkovic (2009) Appl Catal A 357:142CrossRefGoogle Scholar
  34. 34.
    Klimova T, Calderón M, Ramírez J (2003) Appl Catal A 240:29CrossRefGoogle Scholar
  35. 35.
    Ferraz SG, Zotin FMZ, Araujo LRR, Zotin JL (2010) Appl Catal A 384:51CrossRefGoogle Scholar
  36. 36.
    Qiu L, Xu G (2010) Appl Surf Sci 256:3413CrossRefGoogle Scholar
  37. 37.
    Qiherima HL, Yuan H, Zhang Y, Xu G (2011) Chin J Catal 32:240CrossRefGoogle Scholar
  38. 38.
    Shimada H (2003) Catal Today 86:17CrossRefGoogle Scholar
  39. 39.
    Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Nørskov JK, Clausen BS, Topsøe H, Lægsgaard E, Besenbacher F (2007) J Catal 249:220CrossRefGoogle Scholar
  40. 40.
    Lauritsen J, Bollinger M, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen B, Topsøe H, Besenbacher F (2004) J Catal 221:510CrossRefGoogle Scholar
  41. 41.
    Farag H (2007) Appl Catal A 331:51CrossRefGoogle Scholar
  42. 42.
    Martínez DP, Giraldo SA, Centeno A (2006) Appl Catal A 315:35CrossRefGoogle Scholar
  43. 43.
    Ishihara A, Lee J, Dumeignil F, Yamaguchi M, Hirao S, Qian EW, Kabe T (2004) J Catal 224:243CrossRefGoogle Scholar
  44. 44.
    Koh JH, Lee JJ, Kim H, Cho A, Moon SH (2009) Appl Catal B 86:176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Licheng Li
    • 1
    Email author
  • Hainqin Yue
    • 1
  • Shanshan Chen
    • 2
  • Liangliang Huang
    • 3
  • Xiaobao Li
    • 1
  • Zhuhong Yang
    • 4
  • Xiaohua Lu
    • 4
  1. 1.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.Department of Chemical System Engineering, School of EngineeringThe University of TokyoTokyoJapan
  3. 3.School of Chemical, Biological and Materials EngineeringUniversity of OklahomaNormanUSA
  4. 4.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations