Advertisement

Catalysis Letters

, Volume 148, Issue 5, pp 1396–1406 | Cite as

Transalkylation Properties of Hierarchical MFI and MOR Zeolites: Direct Synthesis over Modulating the Zeolite Grow Kinetics with Controlled Morphology

  • Min Liu
  • Wenzhi Jia
  • Xinhua Liu
  • Junhui Li
  • Zhirong Zhu
Article
  • 193 Downloads

Abstract

Hierarchical zeolites with improved diffusion rate are considered the best strategy to eliminate the limitation of purely microporous network in typical zeolite materials. Herein, hierarchical MFI (Hi-MFI) and hierarchical MOR (Hi-MOR) zeolites with controlled morphology were directly synthesized over modulating grow kinetics. The synthetic parameters were investigated systematically, including gel aging and crystallizing conditions. Using hexadecyl trimethyl ammonium bromide (CTAB) and tetrapropyl ammonium bromide (TPABr) as templates, Hi-MFI nanosheets and sphere-like zeolites were obtained. Besides, unilamellar, multilamellar, nanorod and worm-like Hi-MOR zeolites were synthesized in the presence of CTAB and polyethylene glycol (PEG). The transalkylation of toluene and 1,3,5-trimethylbenzene to xylene performance showed that the hierarchical structure of MFI and MOR zeolites enable zeolite with improved 1,3,5-trimethylbenzene conversion and xylene selectivity

Graphical Abstract

Controlled synthesis of hierarchical MFI and MOR zeolites over modulating the grow kinetics.

Keywords

Hierarchical MFI and MOR zeolites Grow kinetics Controlled morphology Transalkylation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20873091 and U1362103). Min Liu acknowledges the support from China Scholarship Council (No. 201606260063).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940CrossRefGoogle Scholar
  2. 2.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  3. 3.
    Cundy CS, Cox PA (2003) Chem Rev 103:663CrossRefGoogle Scholar
  4. 4.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  5. 5.
    Yan Y, Guo X, Zhang Y, Tang Y (2015) Catal Sci Tech 5:772CrossRefGoogle Scholar
  6. 6.
    Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen J, Pérez-Ramírez J, Sels B (2016) Chem Soc Rev 45:3331CrossRefGoogle Scholar
  7. 7.
    Vuong G-T, Do T-O (2007) J Am Chem Soc 129:3810CrossRefGoogle Scholar
  8. 8.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246CrossRefGoogle Scholar
  9. 9.
    Keller TC, Arras J, Wershofen S, Perez-Ramirez J (2014) ACS Catal 5:734CrossRefGoogle Scholar
  10. 10.
    Leng K, Wang Y, Hou C, Lancelot C, Lamonier C, Rives A, Sun Y (2013) J Catal 306:100CrossRefGoogle Scholar
  11. 11.
    Verboekend D, Pérez-Ramírez J (2011) Catal Sci Tech 1:879CrossRefGoogle Scholar
  12. 12.
    Yang XY, Chen L-H, Li Y, Rooke JC, Sanchez C, Su B-L (2017) Chem Soc Rev 46:481CrossRefGoogle Scholar
  13. 13.
    Sherman JD (1999) P Natl Acad Sci 96:3471CrossRefGoogle Scholar
  14. 14.
    Hincapie BO, Garces LJ, Zhang Q, Sacco A, Suib SL (2004) Microporous Mesoporous Mater 67:19CrossRefGoogle Scholar
  15. 15.
    Hu L, Zhang Z, Xie S, Liu S, Xu L (2011) Catal Commun 10:900CrossRefGoogle Scholar
  16. 16.
    Sharma P, Chung WJ (2011) Desalination 275:172CrossRefGoogle Scholar
  17. 17.
    Mao Y, Zhou Y, Wen H, Xie J, Zhang W, Wang J (2014) New J Chem 38:3295CrossRefGoogle Scholar
  18. 18.
    Xiao FS, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su DS, Schlögl R, Yokoi T (2006) Angew Chem 118:3162CrossRefGoogle Scholar
  19. 19.
    Li X, Prins R, van Bokhoven JA (2009) J Catal 262:257CrossRefGoogle Scholar
  20. 20.
    Zhao J, Hua Z, Liu Z, Li Y, Guo L, Bu W, Cui X, Ruan M, Chen H, Shi J (2009) Chem Commun 48:7578CrossRefGoogle Scholar
  21. 21.
    Kim J, Choi M, Ryoo R (2010) J Catal 269:219CrossRefGoogle Scholar
  22. 22.
    Song Y, Hua Z, Zhu Y, Zhou J, Zhou X, Liu Z, Shi J (2012) J Mater Chem 22:3327CrossRefGoogle Scholar
  23. 23.
    Jin L, Xie T, Liu S, Li Y, Hu H (2016) Catal Commun 75:32CrossRefGoogle Scholar
  24. 24.
    Liu M, Li J, Jia W, Qin M, Wang Y, Tong K, Chen H, Zhu Z (2015) RSC Adv 5:9237CrossRefGoogle Scholar
  25. 25.
    Liu M, Jia W, Li J, Wang Y, Ma S, Chen H, Zhu Z (2016) Catal Lett 146:249CrossRefGoogle Scholar
  26. 26.
    Serrano D, Aguado J, Morales G, Rodriguez J, Peral A, Thommes M, Epping J, Chmelka B (2009) Chem Mater 21:641CrossRefGoogle Scholar
  27. 27.
    Zhu Y, Hua Z, Zhou J, Wang L, Zhao J, Gong Y, Wu W, Ruan M, Shi J (2011) Chem-Eur J 17:14618CrossRefGoogle Scholar
  28. 28.
    Liu L, Wang H, Wang R, Sun C, Zeng S, Jiang S, Zhang D, Zhu L, Zhang Z (2014) RSC Adv 4:21301CrossRefGoogle Scholar
  29. 29.
    Xue T, Chen L, Wang YM, He MY (2012) Microporous Mesoporous Mater 156:97CrossRefGoogle Scholar
  30. 30.
    Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R (2010) J Am Chem Soc 132:4169CrossRefGoogle Scholar
  31. 31.
    Davis ME, Lobo RF (1992) Chem Mater 4:756CrossRefGoogle Scholar
  32. 32.
    Mintova S, Valtchev V, Onfroy T, Marichal C, Knözinger H, Bein T (2006) Micropor Mesopor Mater 90:237CrossRefGoogle Scholar
  33. 33.
    Suzuki K, Kiyozumi Y, Matsuzaki K, Shin S (1987) Appl Catal 35:401CrossRefGoogle Scholar
  34. 34.
    Martens JA, Jacobs PA (1987) Synthesis of high-silica aluminosilicate zeolites. ElsevierGoogle Scholar
  35. 35.
    Jan D, Lewis G, Mezza T, Moscoso J, Patton R, Koljack M, Tota P (2004) Stud Surf Sci Catal 154:1332CrossRefGoogle Scholar
  36. 36.
    Liu H, Xie S, Xin W, Liu S, Xu L (2016) Catal Sci Tech 6:1328CrossRefGoogle Scholar
  37. 37.
    Tarach KA, Góra-Marek K, Martinez-Triguero J, Melián-Cabrera I (2017) Catal Sci Tech 7:858CrossRefGoogle Scholar
  38. 38.
    Linares M, Vargas C, García A, Ochoa-Hernández C, Čejka J, García-Muñoz R, Serrano D (2017) Catal Sci Tech 7:181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Chemical EngineeringThe University of MelbourneParkvilleAustralia
  3. 3.School of Chemistry and Chemical EngineeringHubei Polytechnic UniversityHuangshiChina
  4. 4.Dyson School of Design Engineering, Imperial College LondonLondonUK
  5. 5.School of Chemical EngineeringXiangtan UniversityXiangtanChina

Personalised recommendations