Skip to main content
Log in

l-Lysine Functionalized Polyacrylonitrile Fiber: A Green and Efficient Catalyst for Knoevenagel Condensation in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The l-lysine functionalized polyacrylonitrile fiber (PANLF) was prepared by grafting the l-lysine into a commercially available polyacrylonitrile fiber and showed highly catalytic activity for Knoevenagel condensation reaction. With low temperature (45 °C) and short reaction time (1 h), the fiber catalyst was well applicable to Knoevenagel condensation of a wide range of aldehydes and the yields could reach up to 99%. Interestingly, only in water could the reaction take place smoothly (with a yield of 88%) and a polar micro-environment promoted reaction process had been proposed to explain this phenomenon. Besides, the fiber catalyst has advantages of easy preparation, high functional degree, strong mechanical strength and thermal stability, etc. And it can be reused at least 5 times without further treatment and performed well in scaled-up experiment (amplified 50 times) and flow chemistry experiment (no loss of catalytic activity after 48 h), which indicates its potential application in industry application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Mukherjee S, Yang JW, Hoffmann S, List B (2007) Chem Rev 107:5471–5569

    Article  CAS  Google Scholar 

  2. Ward DE, Jheengut V, Akinnusi OT (2005) Org Lett 7:1181–1184

    Article  CAS  Google Scholar 

  3. Hajos ZG, Parrish DR (1974) J Org Chem 39:1615–1621

    Article  CAS  Google Scholar 

  4. Pizzarello S, Weber AL (2004) Science 303:1151

    Article  CAS  Google Scholar 

  5. Davies SG, Sheppard RL, Smith AD, Thomson JE (2005) Chem Commun 30:3802–3804

    Article  Google Scholar 

  6. Ibrahem I, Zou W, Engqvist M, Xu Y, Cordova A (2005) Chem Eur J 11:7024–7029

    Article  CAS  Google Scholar 

  7. Cheng L, Wu X, Lu Y (2007) Org Biomol Chem 5:1018–1020

    Article  CAS  Google Scholar 

  8. List B, Pojarliev P, Martin HJ (2001) Org Lett 3:2423–2425

    Article  CAS  Google Scholar 

  9. List B (2004) Acc Chem Res 37:548–557

    Article  CAS  Google Scholar 

  10. Venkatanarayana M, Dubey PK (2014) J Heterocycl Chem 51:877–882

    Article  CAS  Google Scholar 

  11. Tan H, Chen X, Chen H, Liu H, Qiu S (2015) Eur J Org Chem 2015:4956–4963

    Article  CAS  Google Scholar 

  12. Xu LW, Lu Y (2008) Org Biomol Chem 6:2047–2453

    Article  CAS  Google Scholar 

  13. Choudary BM, Lakshmi Kantam M, Neeraja V, Koteswara Rao K, Figueras F, Delmotte L (2001) Green Chem 3:257–260

    Article  CAS  Google Scholar 

  14. Dandia A, Parewa V, Jain AK, Rathore KS (2011) Green Chem 13:2135–2145

    Article  CAS  Google Scholar 

  15. Hong BC, Dange NS, Ding CF, Liao JH (2012) Org Lett 14:448–451

    Article  CAS  Google Scholar 

  16. Clemens JJ, Asgian JL, Busch BB, Coon T, Ernst J, Kaljevic L, Krenitsky PJ, Neubert TD, Schweiger EJ, Termin A, Stamos D (2013) J Org Chem 78:780–785

    Article  CAS  Google Scholar 

  17. Palao E, Agarrabeitia AR, Banuelos-Prieto J, Lopez TA, Lopez-Arbeloa I, Armesto D, Ortiz MJ (2013) Org Lett 15:4454–4457

    Article  CAS  Google Scholar 

  18. Srinivas V, Koketsu M (2013) J Org Chem 78:11612–11617

    Article  CAS  Google Scholar 

  19. Xu DZ, Yu YQ, Song LL, Yang C (2017) Synthesis 49:1641–1647

    Google Scholar 

  20. Mase N, Horibe T (2013) Org Lett 15:1854–1857

    Article  CAS  Google Scholar 

  21. Zhang Y, Chen C, Wu G, Guan N, Li L, Zhang J (2014) Chem Commun 50:4305–4308

    Article  CAS  Google Scholar 

  22. List B, Castello C (2001) Synlett 2001:1687–1689

    Article  Google Scholar 

  23. Ogiwara Y, Takahashi K, Kitazawa T, Sakai N (2015) J Org Chem 80:3101–3110

    Article  CAS  Google Scholar 

  24. Radi M, Bernardo V, Bechi B, Castagnolo D, Pagano M, Botta M (2009) Tetrahedron Lett 50:6572–6575

    Article  CAS  Google Scholar 

  25. Lai YF, Zheng H, Chai SJ, Zhang PF, Chen XZ (2010) Green Chem 12:1917–1918

    Article  CAS  Google Scholar 

  26. Xu DZ, Liu Y, Shi S, Wang Y (2010) Green Chem 12:514–517

    Article  CAS  Google Scholar 

  27. Ying A, Ni Y, Xu S, Liu S, Yang J, Li R (2014) Ind Eng Chem Res 53:5678–5682

    Article  CAS  Google Scholar 

  28. Trilla M, Pleixats R, Man MWC, Bied C (2009) Green Chem 11:1815–1820

    Article  CAS  Google Scholar 

  29. Sun Y, Cao C, Huang P, Yang S, Song W (2015) RSC Adv 5:86082–86087

    Article  CAS  Google Scholar 

  30. Rana S, Jonnalagadda SB (2017) Catal Commun 92:31–34

    Article  CAS  Google Scholar 

  31. Zhang Y, Xia C (2009) Appl Cat A 366:141–147

    Article  CAS  Google Scholar 

  32. Ying A, Qiu F, Wu C, Hu H, Yang J (2014) RSC Adv 4:33175–33183

    Article  CAS  Google Scholar 

  33. Ying A, Wang L, Qiu F, Hu H, Yang J (2015) C R Chim 18:223–232

    Article  CAS  Google Scholar 

  34. Parida KM, Mallick S, Sahoo PC, Rana SK (2010) Appl Catal A 381:226–232

    Article  CAS  Google Scholar 

  35. Nguyen LTL, Le KKA, Truong HX, Phan NTS (2012) Catal Sci Technol 2:521–528

    Article  CAS  Google Scholar 

  36. Rana S, Maddila S, Pagadala R, Jonnalagadda SB (2015) J Porous Mater 22:353–360

    Article  CAS  Google Scholar 

  37. Dong X, Hui Y, Xie S, Zhang P, Zhou G, Xie Z (2013) RSC Adv 3:3222–3226

    Article  CAS  Google Scholar 

  38. Varadwaj GB, Rana S, Parida KM (2013) Dalton Trans 42:5122–5129

    Article  CAS  Google Scholar 

  39. Liu RX, Zhang BW, Tang HX (1999) React Funct Polym 39:71–81

    Article  CAS  Google Scholar 

  40. Moroi G (2004) Polym Degrad Stab 84:207–214

    Article  CAS  Google Scholar 

  41. Vatutsina OM, Soldatov VS, Sokolova VI, Johann J, Bissen M, Weissenbacher A (2007) React Funct Polym 67:184–201

    Article  CAS  Google Scholar 

  42. Li G, Xiao J, Zhang W (2012) Green Chem 14:2234–2242

    Article  CAS  Google Scholar 

  43. Zhang W, Ma L, Yuan L, Xu C, Li G, Tao M (2012) Synthesis 45:45–52

    Article  Google Scholar 

  44. Li P, Du J, Xie Y, Tao M, Zhang WQ (2016) ACS Sustain Chem Eng 4:1139–1147

    Article  CAS  Google Scholar 

  45. Gong B, Wang Y, Sun Y (2002) Chin J Chem 20:63–67

    CAS  Google Scholar 

  46. Su J, Sheng X, Li S, Sun T, Liu G, Hao A (2012) Org Biomol Chem 10:9319–9324

    Article  CAS  Google Scholar 

  47. Su J, Su F, Ma M, Li S, Xing P, Hao A (2014) Synth Commun 44:1111–1121

    Article  CAS  Google Scholar 

  48. Lesiak B, Zemek J, Jiricek P, Gedeon O, Jozwik A (2008) Surf Interface Anal 40:1507–1515

    Article  CAS  Google Scholar 

  49. Mekki A, Khattak GK, Gondal MA (2011) Int J Surf Sci Eng 5:434–445

    Article  CAS  Google Scholar 

  50. Nesbitt HW, Bancroft GM, Ho R (2017) Surf Interface Anal 49:1298–1308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21572156, No. 21777111 and No. 21306133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Ma or Wenqin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Liu, Y., Ma, N. et al. l-Lysine Functionalized Polyacrylonitrile Fiber: A Green and Efficient Catalyst for Knoevenagel Condensation in Water. Catal Lett 148, 813–823 (2018). https://doi.org/10.1007/s10562-017-2287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2287-y

Keywords

Navigation