Synthesis of Co/Al2O3 Catalysts and Their Application in Heptane Steam Reforming

Abstract

Synthesis of multi-component cobalt based catalysts with different metal precursors and thermal treatment was performed. A special emphasis was put on promotion with ceria. Catalysts, which were synthesized from thermally pre-activated CoCO3·mCo(OH)2·nH2O as a precursor and thereafter underwent reduction in flowing hydrogen, have a clear tendency for decomposition of mixed aluminum–cobalt containing complexes, inevitably formed during thermal treatment. The catalysts were tested in steam reforming of hydrocarbons. The size of metal particles in reduced catalysts was determined by TEM and related to catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A 176:159–176

    CAS  Article  Google Scholar 

  2. 2.

    Yoon S, Kang I, Bae J (2008) Effects of ethylene on carbon formation in diesel authothermal reforming. Int J Hydrog Energy 33:4780–4788

    CAS  Article  Google Scholar 

  3. 3.

    Idriss H (2004) Ethanol reactions over noble metal/cerium oxide catalysts. Platin Met Rev 48(3):105–115

    CAS  Article  Google Scholar 

  4. 4.

    Shabbir A, Sheldon HDL, Magali SF (2015) Catalytic steam reforming of biogas effects of feed composition and operating conditions. Int J Hydrog Energy 40:1005–1015

    Article  Google Scholar 

  5. 5.

    Fauteux-Lefebvre C, Abatzoglou N, Braidy N, Achouri IE (2011) Diesel steam reforming with a nickel-alumina spinel catalyst for solid oxide fuel cell application. J Power Sources 196:7673–7680

  6. 6.

    Chen W, Zhao GF, Xue QS, Chen L, Lu Y (2013) High carbon resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming., Appl Catal B 136–137:260–268

    Article  Google Scholar 

  7. 7.

    Murzin DY (2017) Chemical reaction technology. De Gryuter, Berlin

    Google Scholar 

  8. 8.

    Iqbal S, Davis TE, Hayward JS, Morgan DJ, Karim K, Bartley JK, Taylor SH, Hutchings GJ (2016) Fischer-Tropsch synthesis using promoted cobalt-based catalysts. Catal Today 272:74–79

    CAS  Article  Google Scholar 

  9. 9.

    Brabant C, Khodakov A, Griboval-Constant A (2016) Promotion of lanthanum-supported cobalt-based catalysts for the Fischer-Tropsch reaction. CR Chimie 20:40–46

    Article  Google Scholar 

  10. 10.

    Azizi HR, Mirzaei AA, Kaykhaii M, Mansouri M (2014) Fischer-Tropsch synthesis: studies effect of reduction variables on the performance of Fe–Ni–Co catalyst. J Nat Gas Sci Eng 18:484–491

    CAS  Article  Google Scholar 

  11. 11.

    Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Fischer-Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl Catal A 333:177–191

    CAS  Article  Google Scholar 

  12. 12.

    Shimura K, Miyazawa T, Hanaoka T, Hirata S (2014) Preparation of Co/Al2O3 catalyst for F-T synthesis: combination of impregnation method and homogeneous precipitation method. Appl Catal A 475:1–9

    CAS  Article  Google Scholar 

  13. 13.

    Senecal P, Jacques SDM, Di Michael M, Kimber SAJ, Vamvakeros A, Odarchenko Y, Lezcano-Gonzalez I, Paterson J, Ferguson E, Beale AM (2017) Real-time scattering-contrast imaging of a supported cobalt-based catalyst body during activation and Fischer-Tropsch synthesis revealing spatial dependence of particle size and phase on catalytic properties. ACS Catal 7:2284–2293

    CAS  Article  Google Scholar 

  14. 14.

    Girardon JS, Lermontov AS, Gengembre L, Chernavskii PA, Griboval-Constant A, Khodakov AY (2005) Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts. J Catal 230:339

    CAS  Article  Google Scholar 

  15. 15.

    Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310

    CAS  Article  Google Scholar 

  16. 16.

    Liang H, Raitano JM, Zhang L, Chan S-W (2009) Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem Comm 48:7569–7571

    Article  Google Scholar 

  17. 17.

    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281

    CAS  Article  Google Scholar 

  18. 18.

    Rojanapipatkul S, Goodwin JG Jr, Praserthdam P, Jongsomjit B (2012) Effect of cobalt precursors on properties of Co/CoAl2O4 catalysts synthesized by solvothermal method. Eng J 16:5–14

    Article  Google Scholar 

  19. 19.

    Song H, Mirkelamoglu B, Ozkan US (2010) Effect of cobalt precursor on the performance of ceria-supported cobalt catalysts for ethanol steam reforming. Appl Catal A 382:58–64

    CAS  Article  Google Scholar 

  20. 20.

    Haga F, Nakajima T, Miya H, Mishima S (1997) Catalytic properties of supported cobalt catalysts for steam reforming of ethanol. Catal Lett 48:223–227

    CAS  Article  Google Scholar 

  21. 21.

    Lin SS-Y, Kim DH, Ha SY (2009) Metallic phases of cobalt-based catalysts in ethanol steam reforming: the effect of cerium oxide. Appl Catal A 355:69–77

    CAS  Article  Google Scholar 

  22. 22.

    Bao A, Li J, Zhang Y (2010) Effect of barium on reducibility and activity for cobalt-based Fischer-Tropsch synthesis catalysts. J Energy Chem 19:622–627

    CAS  Google Scholar 

  23. 23.

    Abashar MEE (2016) Low temperature catalytic reforming of heptane to hydrogen and syngas. J Saudi Chem Soc 20:186–195

    Article  Google Scholar 

  24. 24.

    Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Steam reforming of liquid hydrocarbons. Stud Surf Sci Catal 113:81–95

    CAS  Article  Google Scholar 

  25. 25.

    Zhang L, Holt CMB, Luber EJ, Olsen BC, Wang H, Danaie M, Cui X, Tan X, Lui V, Kalisvaart WP, Mitlin D (2011) High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J Phys Chem C 115:24381–24393

    CAS  Article  Google Scholar 

  26. 26.

    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  Article  Google Scholar 

  27. 27.

    Taylor A, Floyd RW (1950) Precision measurements of lattice parameters of non-cubic crystals. Acta Crystal 3:285–289

    CAS  Article  Google Scholar 

  28. 28.

    Petit C, Wang ZL, Pileni MP (2005) Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. J Phys Chem B 109:15309–15316

    CAS  Article  Google Scholar 

  29. 29.

    Rozita Y, Brydson R, Scott AJ (2010) An investigation of commercial gamma-Al2O3 nanoparticles. J Phys 241:012096

    Google Scholar 

  30. 30.

    Fleming S, Rohl A (2005) GDIS: a visualization program for molecular and periodic systems. Z Krist 220:580–584

    CAS  Google Scholar 

  31. 31.

    Bouck RM, Anderson AM, Prasad C, Hagerman ME, Carroll MK (2016) Cobalt-alumina sol-gels: effects of heat treatment on structure and catalytic ability. J Non-Cryst Solids 453:94–102

    CAS  Article  Google Scholar 

  32. 32.

    Bechara R, Balloy D, Dauphin J-Y, Grimblot J (1999) Influence of the characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts. Chem Mater 11:1703–1711

    CAS  Article  Google Scholar 

  33. 33.

    Mansour SAA (1994) Spectrothermal studies on the decomposition course of cobalt oxysalts: Part II—cobalt nitrate hexahydrate. Mater Chem Phys 36:317–323

    CAS  Article  Google Scholar 

  34. 34.

    VandeLoosdrecht J, Barradas S, Caricato EA, Ngwenya NG, Nkwanyana PS, Rawat MAS, Sigwebela BH, van Berge PJ, Visagie JL (2003) Calcination of co-based Fischer-Tropsch synthesis catalysts. Top Catal 26:121–127

    CAS  Article  Google Scholar 

  35. 35.

    Inoue M, Kimura M, Inui T (2000) Alkoxyalumoxanes. Chem Mater 12:55–61

    CAS  Article  Google Scholar 

  36. 36.

    Avramov LK (1977) Derivatographic study of CoOOH decomposition. Thermochim Acta 19:147–152

    CAS  Article  Google Scholar 

  37. 37.

    Artamonova IV, Gorichev IG, Lainer YuA, Godunov EB, Kramer SM, Terekhova MV (2016) Methods for calculating the kinetic parameters of carbonate decomposition from thermal analysis data. Russ Metall 7:592–595

    Article  Google Scholar 

  38. 38.

    Chourashiya MG, Pawar SH, Jadhav LD (2008) Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique. Appl Surf Sci 254:3431–3435

    CAS  Article  Google Scholar 

  39. 39.

    Ummartyotin S, Sangngern S, Kaewvilai A, Koonsaeng N, Manuspiya H, Laobuthee A (2009) Cobalt aluminate (CoAl2O4) derived from Co-Al-TEA complex and its dielectric behaviors. J Sustain Energy Environ 1:31–37

    Google Scholar 

  40. 40.

    Glaspell GP, Jagodzinski PW, Manivannan A (2004) Formation of cobalt nitrate hydrate, cobalt oxide, and cobalt nanoparticles using laser vaporization controlled condensation. J Phys Chem B 108:9604–9607

    CAS  Article  Google Scholar 

  41. 41.

    Li DY, Lin YS, Li YC, Shieh DL, Lin JL (2007) Fabrication of pseudoboehmie and alumina: effects of water and 1-hexadecyl-2,3-dimethyl-imidazolium chloride. Microporous Mesoporous Mater 8:276–282

    Google Scholar 

  42. 42.

    Lian J, Ma J, Duan X, Kim T, Li H, Zheng W (2010) One-step ionothermal synthesis of γ­Al2O3 mesoporous nanoflakes at low temperature. Chem Commun 46:2650–2652

    CAS  Article  Google Scholar 

  43. 43.

    De Souza Santos P, Souza Santos SP, Toledo (2000) Standard transition aluminas: electron microscopy studies. Mat Res 3:104–114

    Article  Google Scholar 

  44. 44.

    De Souza Santos P (1992) Pseudomorphic formation of aluminas from fibrillar pseudoboehmite. Mat Lett 13:175–179

    Article  Google Scholar 

  45. 45.

    Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A 314:9–22

    CAS  Article  Google Scholar 

  46. 46.

    Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310–324

    CAS  Article  Google Scholar 

  47. 47.

    Murzin D (2013) Engineering catalysis. DeGruyter, Berlin

    Google Scholar 

  48. 48.

    Norval GW, Phillips MJ (1990) Application of equilibrium analysis to a Fischer-Tropsch product. J Catal 126:87–91

    CAS  Article  Google Scholar 

  49. 49.

    Wang CB, Tang CW, Tsai HC, Chien SH (2006) Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catal Lett 107:223–230

    CAS  Article  Google Scholar 

  50. 50.

    Vosoughi V, Badoga S, Dalai AK, Abatzoglou N (2016) Effect of pretreatment on physicochemical properties and performance of multiwalled carbon nanotube supported cobalt catalyst for Fischer-Tropsch synthesis. Ind Eng Chem Res 55(21):6049–6059

    CAS  Article  Google Scholar 

  51. 51.

    Arnoldy P, Moulijin JA (1985) Temperature-programmed reduction of CoO/Al2O3 catalysts. J Catal 93:38–54

    CAS  Article  Google Scholar 

  52. 52.

    Fischer N, Minnermann M, Baeumer M, van Steen E, Claeys M (2012) Metal support interactions in Co3O4/Al2O3 catalysts prepared from w/o microemulsions. Catal Lett 142:830–837

    CAS  Article  Google Scholar 

  53. 53.

    Liotta LF, Ousmane M, Di.Carlo G, Pantaleo G, Deganello G, Boreave A, Giroir-Fendler A. (2009) Catalytic removal of toluene over Co3O4-CeO2 catalysts: comparison with Pt/Al2O3. Catal Lett 127:270–276

    CAS  Article  Google Scholar 

  54. 54.

    Melo F, Morlanes N (2008) Study of the composition of ternary mixed oxides: use of these materials on a hydrogen production process. Catal Today 133–135:374–382

    Article  Google Scholar 

Download references

Acknowledgements

Research work is performed within a grant of the Government of the Russian Federation for the state support of the scientific researchers conducted under the leadership of the leading scientists.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry Yu. Murzin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 698 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorofeeva, E.A., Postnov, A.Y., Pavlova, E.A. et al. Synthesis of Co/Al2O3 Catalysts and Their Application in Heptane Steam Reforming. Catal Lett 148, 512–522 (2018). https://doi.org/10.1007/s10562-017-2256-5

Download citation

Keywords

  • Cobalt catalysts
  • Catalyst preparation
  • Heptane steam reforming