Skip to main content
Log in

Nonaqueous Biphasic Hydroformylation of Long Chain Alkenes Catalyzed by Water Soluble Phosphine Rhodium Catalyst with Polyethylene Glycol Instead of Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The application of polyethylene glycol (donated as PEG), as an environmentally benign solvent instead of water, in rhodium catalyzed hydroformylation of long chain alkenes by using water soluble phosphine BISBIS or TPPTS (TPPTS: sodium salt of sulfonated triphenylphosphine, BISBIS: sodium salt of sulfonated 2,2′-bis(diphenylphosphinomethyl)-1,1′-biphenyl) is herein reported. The conversion of long chain alkenes in PEG-200 could reach above 95.0% after a short reaction time (15 min). In addition, an efficient phase separation and recycling of PEG-200 and catalyst were achieved. The leaching of rhodium into product phase detected by ICP-AES was less than 0.06 wt% of the initial amount.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agbossou F, Carpentier JF, Mortreux A (1995) Asymmetric hydroformylation. Chem Rev 95:2485

    Article  CAS  Google Scholar 

  2. Brezny AC, Landis CR (2017) Unexpected CO dependencies, catalyst speciation, and single turnover hydrogenolysis studies of hydroformylation via high pressure NMR spectroscopy. J Am Chem Soc 139:2778

    Article  CAS  Google Scholar 

  3. van Leeuwen PWNM, Claver C (eds) (2000) Rhodium catalyzed hydroformylation. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  4. Franke R, Selent D, Börner A (2012) Applied hydroformylation. Chem Rev 112:5675

    Article  CAS  Google Scholar 

  5. Wang YY, Chen JH, Luo MM, Chen H, Li XJ (2006) Highly regioselective hydroaminomethylation of long chain alkenes catalyzed by Rh-BISB6IS in a two-phase system. Catal Commun 7:979

    Article  CAS  Google Scholar 

  6. Eilbracht P, Bärfacker L, Buss C, Hollmann C, Kitsos-Rzychon BE, Kranemann CL, Rische T, Roggenbuck R, Schmidt A (1999) Tandem reaction sequences under hydroformylation conditions: new synthetic applications of transition metal catalysis. Chem Rev 99:3329

    Article  CAS  Google Scholar 

  7. Liu Y, Li ZH, Wang B, Zhang Y (2016) A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene. Catal Lett 146:2252

    Article  CAS  Google Scholar 

  8. Jin X, Zhao K, Kong FF, Cui FF, Liu QQ, Zhang YW (2014) The mechanism of acetal formation in acid-free Rh-catalyzed tandem hydroformylation-acetalization of olefins in MeOH. Catal Lett 144:192

    Article  CAS  Google Scholar 

  9. Zhang L, Li C, Zheng XL, Fu HY, Chen H, Li RX (2014) Synthesis, characterization of N-pyrrolylphosphanes based on heterocyclic amine backbones and their application in hydroformylation of 1-octene. Catal Lett 144:1074

    Article  CAS  Google Scholar 

  10. Behr A, Neubert P (2013) Applied homogeneous catalysis. Angew Chem Int Ed 52:1627

    Google Scholar 

  11. Kuntz EG (1987) Homogeneous catalysis in water. Chem Tech 17:570

    CAS  Google Scholar 

  12. Cornils B, Wiebus E (1995) Aqueous catalysts for organic reactions. Chem Tech 23:33

    Google Scholar 

  13. Cornils B, Kuntz EG (1995) Introducing TPPTS and related ligands for industrial biphasic processes. J Organomet Chem 502:177

    Article  CAS  Google Scholar 

  14. Cornils B, Herrmann WA, Eckl RW (1997) Industrial aspects of aqueous catalysis. J Mol Catal A 116:27

    Article  CAS  Google Scholar 

  15. Cornils B (1999) Bulk and fine chemicals via aqueous biphasic catalysis. J Mol Catal A 143:1

    Article  CAS  Google Scholar 

  16. Siangwata S, Baartzes N, Makhubela BCE, Smith GS (2015) Synthesis, characterisation and reactivity of water-soluble ferrocenylimine-Rh(I) complexes as aqueous-biphasic hydroformylation catalyst precursors. J Organomet Chem 796:26

    Article  CAS  Google Scholar 

  17. Feng CL, Wang YH, Jiang JY, Yang YC, Yu FL, Jin ZL (2006) Using thermoregulated PEG biphase system to effect the hydroformylation of p-isobutylstyrene catalyzed by Rh/OPGPP complex. J Mol Catal A 248:159

    Article  CAS  Google Scholar 

  18. Borrmann T, Roesky HW, Ritter U (2000) Biphasic hydroformylation of olefins using a novel water soluble rhodium polyethylene glycolate catalyst. J Mol Catal A 153:31

    Article  CAS  Google Scholar 

  19. Herrmann WA, Kohlpaintner CW, Bahrmann H, Knokol W (1992) Water-soluble metal complexes and catalysts Part 6. A new, efficient water-soluble catalyst for two-phase hydroformylation of olelins. J Mol Catal 73:191

    Article  CAS  Google Scholar 

  20. Chen H, Liu HC, Li YZ, Cheng FM, Li XJ (1994) J Mol Catal 8:124

    CAS  Google Scholar 

  21. Kamer PCJ, vanLeeuwen PWNM., Reek JNH (2001) Wide bite angle diphosphines: xantphos ligands in transition metal complexes and catalysis. Acc Chem Res 34:895

    Article  CAS  Google Scholar 

  22. van Leeuwen PWNM., Kamer PCJ, Reek JNH, Dierkes P (2000) Ligand bite angle effects in metal-catalyzed C–C bond formation. Chem Rev 100:2741

    Article  Google Scholar 

  23. Yuan ML, Chen H, Li RX, Li YZ, Li XJ (2004) High active and regioselective hydroformylation of 1-dodecene catalyzed by Rh-BISBIS in a two-phase system. Cat Lett 94:15

    Article  CAS  Google Scholar 

  24. Yuan ML, Chen H, Li RX, Li YZ, Li XJ (2003) Hydroformylation of 1-butene catalyzed by water-soluble Rh–BISBIS complex in aqueous two-phase catalytic system. Appl Cat A 251:181

    Article  CAS  Google Scholar 

  25. Walter S, Spohr H, Franke R, Hieringer W, Wasserscheid P, Haumann M (2017) Detailed investigation of the mechanism of Rh-Diphosphite supported ionic liquid phase (SILP)-catalyzed 1-butene hydroformylation in the gas phase via combined kinetic and density functional theory (DFT) modeling studies. ACS Catal 7:1035

    Article  CAS  Google Scholar 

  26. Fu HY, Li M, Chen J, Zhang RM, Jiang WD, Yuan ML, Chen H, Li XJ (2008) Application of a new amphiphilic phosphine in the aqueous biphasic catalytic hydroformylation of long chain olefins. J Mol Catal A: Chem 292:21

    Article  CAS  Google Scholar 

  27. Casey CP, Whiteker GT, Melville MG, Petrovich LM, Gavney JA Jr, Powell DR (1992) Diphosphines with natural bite angles near 120° increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation. J Am Chem Soc 114:5535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Sichuan university outstanding scholar research fund (No. 2015SCU04A05), the National Natural Science Foundation of China (No. 201202108), and the Opening Project of Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education (No. LZJ1402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, Y., Wei, J. et al. Nonaqueous Biphasic Hydroformylation of Long Chain Alkenes Catalyzed by Water Soluble Phosphine Rhodium Catalyst with Polyethylene Glycol Instead of Water. Catal Lett 148, 438–442 (2018). https://doi.org/10.1007/s10562-017-2247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2247-6

Keywords

Navigation