Skip to main content
Log in

Green Synthesis of Pd Nanoparticles Supported on Magnetic Graphene Oxide by Origanum vulgare Leaf Plant Extract: Catalytic Activity in the Reduction of Organic Dyes and Suzuki–Miyaura Cross-Coupling Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel and green approach based on the biosynthesis of palladium nanoparticles on modified graphene oxide by Origanum vulgare leaf plant extract have been developed by our group. The prepared magnetically nanocatalyst was characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy. The heterogeneous catalytic system was investigated for the reduction of 4-nitrophenol, methylene blue and methyl orange in the presence of NaBH4 as a reducing reagent and also for Suzuki–Miyaura cross-coupling reactions between phenylboronic acid and a range of aryl halides (X = I, Br, Cl). Moreover, synthesized catalyst could be readily recycled and reused several times without significant loss of activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alimardanov A, Schmieder-van de Vondervoort L, de Vries AH, de Vries JG (2004) Adv Synth Catal 346:1812–1817

    Article  CAS  Google Scholar 

  2. Tsuji J (2006) Palladium reagents and catalysts: new perspectives for the 21st century. Wiley

  3. Lamblin M, Nassar-Hardy L, Hierso JC, Fouquet E, Felpin FX (2010) Adv Synth Catal 352:33–79

    Article  CAS  Google Scholar 

  4. Favier I, Madec D, Teuma E, Gomez MP (2011) Curr Org Chem 15:3127–3174

    Article  CAS  Google Scholar 

  5. Wan Y, Wang H, Zhao Q, Klingstedt M, Terasaki O, Zhao D (2009) J Am Chem Soc 131:4541–4550

    Article  CAS  Google Scholar 

  6. Tanaka S, Kaneko T, Asao N, Yamamoto Y, Chen M, Zhang W, Inoue A (2011) Chem Commun 47:5985–5987

    Article  CAS  Google Scholar 

  7. Li Z, Lin S, Ji L, Zhang Z, Zhang X, Ding Y (2014) Catal Sci Technol 4:1734–1737

    Article  CAS  Google Scholar 

  8. Parlett CM, Keshwalla P, Wainwright SG, Bruce DW, Hondow NS, Wilson K, Lee AF (2013) ACS Catal 3:2122–2129

    Article  CAS  Google Scholar 

  9. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  10. Campeau L-C, Fagnou K (2006) Chem Commun 1253–1264

  11. Baudoin O, Cesario M, Guenard D, Guéritte F (2002) J Org Chem 67:1199–1207

    Article  CAS  Google Scholar 

  12. Torborg C, Beller M (2009) Adv Synth Catal 351:3027–3043

    Article  CAS  Google Scholar 

  13. Suzuki M, Yamato Y, Akiyama T (1977) Water Res 11:275–279

    Article  CAS  Google Scholar 

  14. Lee D-H, Jin M-J (2010) Org Lett 13:252–255

    Article  Google Scholar 

  15. Mandali PK, Chand DK (2013) Catal Commun 31:16–20

    Article  CAS  Google Scholar 

  16. Heugebaert TS, De Corte S, Sabbe T, Hennebel T, Verstraete W, Boon N, Stevens CV (2012) Tetrahedron Lett 53:1410–1412

    Article  CAS  Google Scholar 

  17. Peng Y-Y, Liu J, Lei X, Yin Z (2010) Green Chem 12:1072–1075

    Article  CAS  Google Scholar 

  18. Wei S, Dong Z, Ma Z, Sun J, Ma J (2013) Catal Commun 30:40–44

    Article  CAS  Google Scholar 

  19. Sakurai H, Tsukuda T, Hirao T (2002) J Org Chem 67:2721–2722

    Article  CAS  Google Scholar 

  20. Bhanage BM, Arai M (2001) Catal Rev 43:315–344

    Article  CAS  Google Scholar 

  21. Köhler K, Heidenreich RG, Soomro SS, Pröckl SS (2008) Adv Synth Catal 350:2930–2936

    Article  Google Scholar 

  22. Srivastava R, Venkatathri N, Srinivas D, Ratnasamy P (2003) Tetrahedron Lett 44:3649–3651

    Article  CAS  Google Scholar 

  23. Djakovitch L, Koehler K (2001) J Am Chem Soc 123:5990–5999

    Article  CAS  Google Scholar 

  24. Djakovitch L, Koehler K (1999) J Mol Catal A 142:275–284

    Article  CAS  Google Scholar 

  25. Narayanan R, El-Sayed MA (2003) J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  26. Narayanan R, El-Sayed MA (2004) J Phys Chem B 108:8572–8580

    Article  CAS  Google Scholar 

  27. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  28. Rumi L, Scheuermann GM, Mülhaupt R, Bannwarth W (2011) Helv Chim Acta 94:966–976

    Article  CAS  Google Scholar 

  29. Siamaki AR, Abd El Rahman SK, Abdelsayed V, El-Shall MS, Gupton BF (2011) J Catal 279:1–11

    Article  CAS  Google Scholar 

  30. Makharza S, Cirillo G, Bachmatiuk A, Ibrahim I, Ioannides N, Trzebicka B, Hampel S, Rümmeli MH (2013) J Nanopart Res 15:2099

    Article  Google Scholar 

  31. Ramasamy MS, Mahapatra SS, Cho JW (2015) J Colloid Interface Sci 455:63–70

    Article  CAS  Google Scholar 

  32. Jing Q, Liu W, Pan Y, Silberschmidt VV, Li L, Dong ZC (2015) Mater Des 85:808–814

    Article  CAS  Google Scholar 

  33. Pan Y, Bao H,. Sahoo NG, Wu T, Li L (2011) Adv Funct Mater 21:2754–2763

    Article  CAS  Google Scholar 

  34. Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Macromol Rapid Commun 31:281–288

    Article  CAS  Google Scholar 

  35. Jia L, Zhang Q, Li Q, Song H (2009) Nanotechnology 20:385601

    Article  Google Scholar 

  36. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) J Biomater Nanobiotechnol 3:14–19

    Article  CAS  Google Scholar 

  37. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy S, Yun Y-S (2009) J Hazard Mater171:400–404

    Article  CAS  Google Scholar 

  38. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo J. Hong B L (2010) J Nanopart Res 12:1589–1598

    Article  CAS  Google Scholar 

  39. Sathishkumar M, Sneha K, Yun YP (2009) Int J Mater Sci 4:11–17

    Google Scholar 

  40. Veisi H, Faraji AR, Hemmati S, Gil A (2015) Appl Organomet Chem 29:517–523

    Article  CAS  Google Scholar 

  41. Khazaei A, Rahmati S, Hekmatian Z, Saeednia S (2013) J Mol Catal A 372:160–166

    Article  CAS  Google Scholar 

  42. Veisi H, gorbani-Vaghei R, Hemmati S, Aliani M. Ozturk H T (2015) Appl Organomet Chem 29:26–32

    Article  CAS  Google Scholar 

  43. Petcharoen K, Sirivat A (2012) Mater Sci Eng B 177:421–427

    Article  CAS  Google Scholar 

  44. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  45. Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  46. Humers W, Offeman R (1958) J Am Chem Soc 80:1339

    Article  Google Scholar 

  47. Zu S-Z, Han B-H (2009) J Phys Chem C 113:13651–13657

    Article  CAS  Google Scholar 

  48. Titelman GI, Gelman V, Bron S, Khalfin RL, Cohen Y, Bianco-Peled H (2005) Carbon 43:641–649

    Article  CAS  Google Scholar 

  49. Gromov A, Dittmer S, Svensson J, Nerushev OA, Perez-García SA, Licea-Jiménez L, Rychwalski R, Campbell EE (2005) J Mater Chem 15:3334–3339

    Article  CAS  Google Scholar 

  50. Yang Y, Wan M (2002) J Mater Chem 12:897–901

    Article  CAS  Google Scholar 

  51. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) J Mater Chem 112:7098–7105

    Article  Google Scholar 

  52. Kemikli N, Kavas H, Kazan S, Baykal A, Ozturk R (2010) J Alloy Compd 502:439–444

    Article  CAS  Google Scholar 

  53. Petla RK, Vivekanandhan S, Misra M, Mohanty A. K, Satyanarayana N (2011) J Biomater Nanobiotechnol 3:14–19

    Article  Google Scholar 

  54. Das DD, Sayari A (2007) J Catal 246:60–65

    Article  CAS  Google Scholar 

  55. Shiyong L, Qizhong Z, Zhengneng J, Huajiang J, Xuanzhen J (2010) Chin J Catal 31:557–561

    Article  Google Scholar 

  56. Yang X, Fei Z, Zhao D, Ang WH, Li Y, Dyson P (2008) J Inorg Chem 47:3292–3297

    Article  CAS  Google Scholar 

  57. Kim SW, Kim M, Lee WY, Hyeon T (2002) J Am Chem Soc 124:7642–7643

    Article  CAS  Google Scholar 

  58. Hekmati M, Bonyasi F, Javaheri H, Hemmati S (2017) Appl Organomet Chem e3757:1–7

    Google Scholar 

  59. Kwon TH, Cho K, Baek Y, Yoon KY, Kim HG B. M (2017) RSC Adv 7:11684–11690

    Article  CAS  Google Scholar 

  60. Nie R, Shi J, Du W, Hou Z (2014) Ni2O3-around-Pd hybrid on graphene oxide. Appl Catal A 473:1–6

    Article  CAS  Google Scholar 

  61. Jafar Hoseini S, Ghanavat Khozestan H, Hashemi Fath R (2015) RSC Adv 5:47701–47708

    Article  Google Scholar 

  62. Karical RG, James KW, Fox M (2013) Nano Lett 3:1757–1760

    Google Scholar 

  63. Gazi S, Ananthakrishnan R (2011) Appl Catal B 105:317–325

    Article  CAS  Google Scholar 

  64. Li H, Han L, Cooper-White J, Kim I (2012) Green Chem 14:586–591

    Article  CAS  Google Scholar 

  65. Jiang K, Zhang HX, Yang YY, Mothes R, Lang H, Cai WB (2011) Chem Commun 47:11924–11926

    Article  CAS  Google Scholar 

  66. Harish S, Mathiyarasu J, Phani KLN, Yegnaraman V (2009) J Catal Lett 128:197–202

    Article  CAS  Google Scholar 

  67. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Chem Mater 19:1062–1069

    Article  CAS  Google Scholar 

  68. Lu X, Bian X, Nie G, Zhang C, Wang C, Wei Y (2012) J Chem Mater 22:12723–12730

    Article  CAS  Google Scholar 

  69. Morere J, Tenorio MJ, Torralvo MJ, Pando C, Renuncio JAR, Cabanas A (2011) J Supercrit Fluids 56:213–222

    Article  CAS  Google Scholar 

  70. Bhandari R, Knecht MR (2011) ACS Catal 1:89–98

    Article  CAS  Google Scholar 

  71. Ghosh BK, Hazra S, Naik B, Ghosh NN (2015) Powder Technol 269:371–378

    Article  CAS  Google Scholar 

  72. Omidvar A, Jaleh B, Nasrollahzadeh M (2017) J Colloid Interface SCI 496:44–50

    Article  CAS  Google Scholar 

  73. Hatamifard A, Nasrollahzadeh M, Lipkowski J (2015) RSC Adv 5:91372–91381

    Article  CAS  Google Scholar 

  74. Dutt S, Siril P. Sharma F, Periasamy V S (2015) New J Chem 39:902–908

    Article  CAS  Google Scholar 

  75. Feng H, Zheng-yi Z, Yao X, Wu-xiang W, Ya-fang H, Run W (2000) Acta Metall Sin 36:659–661

    CAS  Google Scholar 

  76. Li S, Li H, Liu J, Zhang H, Yang Y, Yang Z, Wang L, Wang B (2015) Dalton Trans 44:9193–9199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Iranian Nanotechnology Initiative and the Research Council of Shahid Bahonar University of Kerman and Chemistry Department for supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Sheibani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyedi, N., Saidi, K. & Sheibani, H. Green Synthesis of Pd Nanoparticles Supported on Magnetic Graphene Oxide by Origanum vulgare Leaf Plant Extract: Catalytic Activity in the Reduction of Organic Dyes and Suzuki–Miyaura Cross-Coupling Reaction. Catal Lett 148, 277–288 (2018). https://doi.org/10.1007/s10562-017-2220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2220-4

Keywords

Navigation