Catalysis Letters

, Volume 147, Issue 11, pp 2689–2696 | Cite as

Trends in Adsorption Energies of the Oxygenated Species on Single Platinum Atom Embedded in Carbon Nanotubes

  • Samira SiahrostamiEmail author
  • Guo-Ling Li
  • Jens K. Nørskov
  • Felix Studt


Herein we study the effect of strain on the catalytic activity of different Pt-doped single wall metallic carbon nanotubes (SWCNT) towards the oxygen reduction reaction (ORR). We consider the possibility of the Pt-doped at single vacancy inside the SWCNT to investigate the effect of confinement on the reaction mechanism. Density functional theory calculations indicate that for the SWCNTs with tube diameters below 7 Å, the strain energy varies significantly influencing the adsorption energies of the key intermediates of the ORR reaction. For the SWCNTs with tube diameters above 7 Å, on the other hand, both the calculated strain and the adsorption energies are almost constant. We furthermore find that the adsorption energies are strongly affected by confinement effects as shown for Pt-doped systems that are located inside the SWCNT. We show that the Pt-doped at single vacancy of the SWCNT strongly binds the oxygenated species under ORR potentials and therefore the active species is covered by oxo- or hydroxo group. Because the presence of Pt atoms doped at the single and double vacancies of the SWCNT is equivalently probable we also studied the Pt-doped at double vacancy. We find that the most active motif is the Pt-doped at double vacancy of SWCNT with 0.24V overpotenital.

Graphical Abstract


Oxygen reduction reaction Single wall carbon nanotube (SWCNT) Pt-doped at single and dobule vacancy 



We gratefully acknowledge support from the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, to the SUNCAT Center for Interface Science and Catalysis. S.S acknowledges support from the Global Climate Energy Project (GCEP) at Stanford University (Fund No. 52454). The calculations were financially supported by Henan University of Science and Technology (No. 2013ZCX018) and National Natural Science Foundation of China (Nos. U1404212 and 11404098).

Supplementary material

10562_2017_2200_MOESM1_ESM.docx (436 kb)
Supplementary material 1 (DOCX 435 KB)


  1. 1.
    Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Front Chem 2:79CrossRefGoogle Scholar
  2. 2.
    Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim Acta 40:355–363CrossRefGoogle Scholar
  3. 3.
    Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells. J Electrochem Soc 139:L28CrossRefGoogle Scholar
  4. 4.
    Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C (2008) Carbon support oxidation in PEM fuel cell cathodes. J Power Sources 176:444–451CrossRefGoogle Scholar
  5. 5.
    Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76CrossRefGoogle Scholar
  6. 6.
    Gan Y, Sun L, Banhart F (2008) One- and two-dimensional diffusion of metal atoms in graphene. Small 4:587–591CrossRefGoogle Scholar
  7. 7.
    Stolbov S, Alcántara Ortigoza M (2015) Gold-doped graphene: a highly stable and active electrocatalysts for the oxygen reduction reaction. J Chem Phys 142:154703CrossRefGoogle Scholar
  8. 8.
    Kaukonen M, Krasheninnikov AV, Kauppinen E, Nieminen RM (2013) Doped graphene as a material for oxygen reduction reaction in hydrogen fuel cells: a computational study. ACS Catal 3:159–165CrossRefGoogle Scholar
  9. 9.
    Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752CrossRefGoogle Scholar
  10. 10.
    Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  11. 11.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon N Y 44:1624–1652CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Huang J-Q, Qian W-Z, Zhang Y-Y, Wei F (2013) The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9:1237–1265CrossRefGoogle Scholar
  13. 13.
    Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044CrossRefGoogle Scholar
  14. 14.
    Liu X, Pan X, Zhang S, Han X, Bao X (2014) Diffusion of water inside carbon nanotubes studied by pulsed field gradient NMR spectroscopy. Langmuir 30(27):8036–8045CrossRefGoogle Scholar
  15. 15.
    Kresse G (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  16. 16.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  17. 17.
    Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys Rev B 85:235149CrossRefGoogle Scholar
  18. 18.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  19. 19.
    Xin Z, Jianjun Z, Zhong-Can O-Y (2000) Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B 62:13692–13696CrossRefGoogle Scholar
  20. 20.
    Kudin KN, Scuseria GE, Yakobson BI (2001) C 2 F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406CrossRefGoogle Scholar
  21. 21.
    Hou Z, Wang X, Ikeda T, Terakura K, Oshima M, Kakimoto M, Miyata S (2012) Interplay between nitrogen dopants and native point defects in graphene. Phys Rev B 85:165439CrossRefGoogle Scholar
  22. 22.
    da Silva LB, Fagan ASB, Mota R (2003) Ab initio study of deformed carbon nanotube sensors for carbon monoxide molecules. Nano Lett 3:1233–1277Google Scholar
  23. 23.
    Song X, Liu S, Yan H, Gan Z (2009) First-principles study on effects of mechanical deformation on outer surface reactivity of carbon nanotubes. Phys E 41:626–630CrossRefGoogle Scholar
  24. 24.
    Park S, Deepak Srivastava A, Cho K (2003) Generalized chemical reactivity of curved surfaces: carbon nanotubes. Nano Lett 3:1273–1277CrossRefGoogle Scholar
  25. 25.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skúlason E, Bligaard T, Nørskov JK (2007) Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys Rev Lett 99:16105CrossRefGoogle Scholar
  26. 26.
    Fernández EM, Moses PG, Toftelund A, Hansen HA, Martínez JI, Abild-Pedersen F, Kleis J, Hinnemann B, Rossmeisl J, Bligaard T, Nørskov JK (2008) Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew Chem Int Ed Engl 47:4683–4686CrossRefGoogle Scholar
  27. 27.
    Koper MTM (2013) Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem Sci 4:2710CrossRefGoogle Scholar
  28. 28.
    Rodríguez-Manzo JA, Cretu O, Banhart F (2010) Trapping of metal atoms in vacancies of carbon nanotubes and graphene. ACS Nano 4:3422–3428CrossRefGoogle Scholar
  29. 29.
    Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis MN, Li R, Ye S, Knights S, Botton GA, Sham T-K, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3:1775CrossRefGoogle Scholar
  30. 30.
    Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484–10487CrossRefGoogle Scholar
  31. 31.
    Jeon I-Y, Choi M, Choi H-J, Jung S-M, Kim M-J, Seo J-M, Bae S-Y, Yoo S, Kim G, Jeong HY, Park N, Baek J-B (2015) Antimony-doped graphene nanoplatelets. Nat Commun 6:7123CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Samira Siahrostami
    • 1
    Email author
  • Guo-Ling Li
    • 2
    • 3
  • Jens K. Nørskov
    • 1
    • 2
  • Felix Studt
    • 2
    • 4
    • 5
  1. 1.Department of Chemical Engineering, SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratorySUNCAT Center for Interface Science and CatalysisMenlo ParkUSA
  3. 3.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  4. 4.Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  5. 5.Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations