Advertisement

Catalysis Letters

, Volume 147, Issue 10, pp 2656–2663 | Cite as

Propylsulfonic Acid-Anchored Isocyanurate-Based Periodic Mesoporous Organosilica (PMO-ICS-PrSO3H): A Highly Efficient and Recoverable Nanoporous Catalyst for the One-Pot Synthesis of Substituted Polyhydroquinolines

  • Amene Yaghoubi
  • Mohammad G. DekaminEmail author
  • Babak Karimi
Article

Abstract

Propylsulfonic acid-anchored isocyanurate bridging periodic mesoporous organosilica (PMO-ICS-PrSO3H) was shown to be a highly active and efficient recyclable catalyst for the four-component synthesis of polyhydroquinoline derivatives from dimedone, different aldehydes, ethyl acetoacetate and ammonium acetate under mild reaction conditions in short reaction times and good to excellent yields in EtOH. Moreover, the catalyst was also recovered and reused at least four times without significant decrease in its activity. The PMO-ICS-PrSO3H catalyst was characterized by FTIR spectroscopy, TGA, nitrogen adsorption–desorption isotherms as well as FESEM. Compared to the classical methodologies, this method illustrated significant advantages including low loading of the catalyst, avoiding the use of toxic transition metals or reactive reagents for modification of the catalytic activity, short reaction times, high to excellent yields, easy separation and purification of the products, and reusability of the catalyst.

Graphical Abstract

Keywords

Heterocycles Periodic mesoporous organosilicas (PMOs) Solid acids Multicomponent reactions (MCRs) Green chemistry 

Notes

Acknowledgements

We are grateful for the financial support from The Research Council of Iran University of Science and Technology (IUST), Tehran, Iran (Grant No. 160/347). We would also like to acknowledge the support of Iran Nanotechnology Initiative Council (INIC), Iran.

Supplementary material

10562_2017_2159_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2829 KB)

References

  1. 1.
    Elhamifar D, Badin P, Karimipoor G (2017) J Colloid Interface Sci 499:120CrossRefGoogle Scholar
  2. 2.
    Patil D, Chandam D, Mulik A, Patil P, Jagadale S, Kant R, Gupta V, Deshmukh M (2014) Catal Lett 144:949–958CrossRefGoogle Scholar
  3. 3.
    Palermo V, Sathicq AG, Constantieux T, Rodríguez J, Vázquez PG, Romanelli GP (2016) Catal Lett 146:1634–1647CrossRefGoogle Scholar
  4. 4.
    Zolfagharinia S, Kolvari E, Koukabi N (2017) Catal Lett. doi: 10.1007/s10562-017-2015-7:1-16 Google Scholar
  5. 5.
    Sanchez LM, Sathicq AG, Thomas HJ, Romanelli GP (2012) Recent Patents Catal 1:119–128CrossRefGoogle Scholar
  6. 6.
    Mager PP, Coburn RA, Solo AJ, Triggle DJ, Rothe H (1992) Drug Des Discov 8:273–289Google Scholar
  7. 7.
    Sabitha G, Reddy GSKK, Reddy CS, Yadav JS (2003) Tetrahedron Lett 44:4129–4131CrossRefGoogle Scholar
  8. 8.
    Hong M, Cai C, Yi WB (2010) J Fluor Chem 131:111–114CrossRefGoogle Scholar
  9. 9.
    Wang LM, Sheng J, Zhang L, Han JW, Fan ZY, Tian H, Qian CT (2005) Tetrahedron 61:1539–1543CrossRefGoogle Scholar
  10. 10.
    Tewari N, Dwivedi N, Tripathi RP (2004) Tetrahedron Lett 45:9011–9014CrossRefGoogle Scholar
  11. 11.
    Heravi MM, Bakhtiari K, Javadi NM, Bamoharram FF, Saeedi M, Oskooie HO (2007) J Mol Catal A 264:50–52CrossRefGoogle Scholar
  12. 12.
    Ji SJ, Jiang ZQ, Lu J, Loh TP (2004) Synlett 2004:831–835CrossRefGoogle Scholar
  13. 13.
    Wang LM, Sheng J, Zhang L, Han JW, Fan Z, Tian H, Qian CT (2005) Tetrahedron 61:1539–1543CrossRefGoogle Scholar
  14. 14.
    Ko S, Yao CF (2006) Tetrahedron Lett 62:7293–7299CrossRefGoogle Scholar
  15. 15.
    Ko S, Sastry MNV, Lin C, Yao CF (2005) Tetrahedron Lett 46:5771–5774CrossRefGoogle Scholar
  16. 16.
    Kumar A, Maurya RA (2008) Synlett 2008:883–885CrossRefGoogle Scholar
  17. 17.
    Chandrasekhar S, Rao YS, Sreelakshmi L, Mahipal B, Reddy CR (2008) Synthesis 2008:1737–1741CrossRefGoogle Scholar
  18. 18.
    Sridhar R, Perumal PT (2005) Tetrahedron 61:2465–2470CrossRefGoogle Scholar
  19. 19.
    Maheswara M, Siddaiah V, Damu GLV, Rao CV (2006) ARKIVOC 2:201–206Google Scholar
  20. 20.
    Evans CG, Gestwicki JE (2009) Org Lett 11:2957–2959CrossRefGoogle Scholar
  21. 21.
    Dekamin MG, Arefi E, Yaghoubi A (2016) RSC Adv 6:86982–86988CrossRefGoogle Scholar
  22. 22.
    Voort PVD, Esquivel D, Canck ED, Goethals F, Driessche IV, Romero-Salguero FJ (2013) Chem Soc Rev 42:3913–3955CrossRefGoogle Scholar
  23. 23.
    Lamei K, Eshghi H, Bakavoli M, Rostamnia S (2016) Catal Lett 147:491–501CrossRefGoogle Scholar
  24. 24.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Chem Soc Rev 38:481–494CrossRefGoogle Scholar
  25. 25.
    Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA (2005) Acc Chem Res 38:305–312CrossRefGoogle Scholar
  26. 26.
    Hunks WJ, Ozin GA (2005) J Mater Chem 15:3716–3724CrossRefGoogle Scholar
  27. 27.
    Nakajima K, Tomita I, Hara M, Hayashi S, Domen K, Kondo JN (2005) Adv Mater 17:1839:1842Google Scholar
  28. 28.
    Hoffmann F, Fröba M (2011) Chem Soc Rev 40:608–620CrossRefGoogle Scholar
  29. 29.
    Whitnall W, Cademartiri L, Ozin GA (2007) J Am Chem Soc 129:15644CrossRefGoogle Scholar
  30. 30.
    Liu W, Ma N, Li S, Zhang X, Huo W, Xu J et al (2017) J Mater Sci 52:2868–2878CrossRefGoogle Scholar
  31. 31.
    Singh AP, Torita N, Shylesh S, Iwasa N, Arai M (2009) Catal Lett 132:492CrossRefGoogle Scholar
  32. 32.
    Morales V, Villajos JA, García RA (2013) J Mater Sci 48:5990–6000CrossRefGoogle Scholar
  33. 33.
    Dekamin MG, Moghaddam MF, Saeidian H, Mallakpour S (2006) Monatsh Chem 137:1591–1595CrossRefGoogle Scholar
  34. 34.
    Dekamin MG, Varmira K, Farahmand M, Sagheb-Asl S, Karimi Z (2010) Catal Commun 12:226–230CrossRefGoogle Scholar
  35. 35.
    Dekamin MG, Ghanbari M, Moghbeli MR, Barikani M, Javanshir S (2013) Polym Plast Technol Eng 52:1127–1132CrossRefGoogle Scholar
  36. 36.
    Sonnenschein MF, Polyurethanes: Science, technology, markets, and trends, Wiley, Hoboken, 1st edn, (2014)Google Scholar
  37. 37.
    Olkhovyk O, Jaroniec M (2005) J Am Chem Soc 127:60–61CrossRefGoogle Scholar
  38. 38.
    Jerome F, Pouilloux Y, Barrault J (2008) ChemSusChem 1:586–613CrossRefGoogle Scholar
  39. 39.
    Esquivel D, Voort PVD, Romero-Salguero FJ (2014) AIMS Mater Sci 1:70–86CrossRefGoogle Scholar
  40. 40.
    Grudzien RM, Blitz JP, Pikus S, Jaroniec M (2009) J Colloid Interface Sci 333:354–362CrossRefGoogle Scholar
  41. 41.
    Wahab MA, Beltramini JN (2015) RSC Adv 5:79129–79151CrossRefGoogle Scholar
  42. 42.
    Zhu J, Bienaymé H (2005) Multicomponent Reactions. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  43. 43.
    Zhang Y, Ao Y-F, Huang ZT, Wang DX, Wang MX, Zhu J (2016) Angew Chem Int Ed 55:5282–5285CrossRefGoogle Scholar
  44. 44.
    Dömling A, Wang W, Wang K (2012) Chem Rev 112:3083–3135CrossRefGoogle Scholar
  45. 45.
    Martínez JJ, Nope E, Rojas H, Cubillos J, Sathicq ÁG, Romanelli GP (2014) Catal Lett 144:1322–1331CrossRefGoogle Scholar
  46. 46.
    Zheng H, Mei Y-J, Du K, Shi Q-Y, Zhang PF (2013) Catal Lett 143:298–301CrossRefGoogle Scholar
  47. 47.
    Wan L, Cai C (2012) Catal Lett 142:1134–1140CrossRefGoogle Scholar
  48. 48.
    Zolfigol MA, Ghaderi H, Baghery S, Mohammadi L (2017) J Iran Chem Soc 14:121–134CrossRefGoogle Scholar
  49. 49.
    Doustkhah E, Rostamnia S, Hassankhani A (2016) J Porous Mater 23:549–556CrossRefGoogle Scholar
  50. 50.
    Ahankar H, Ramazani A, Joo SW (2016) Res Chem Intermed 42:2487–2500CrossRefGoogle Scholar
  51. 51.
    Dekamin MG, Kazemi E, Karimi Z, Mohammadalipoor M, Naimi-Jamal MR (2016) Int J Biol Macromol 93:767–774CrossRefGoogle Scholar
  52. 52.
    Yarhosseni M, Javanshir S, Dekamin MG, Farhadnia M (2016) Monatsh Chem 147:1779–1787CrossRefGoogle Scholar
  53. 53.
    Dekamin MG, Ilkhanizadeh S, Latifidoost Z, Daemi H, Karimi Z, Barikani M (2014) RSC Adv 4:56658–56664CrossRefGoogle Scholar
  54. 54.
    Dekamin MG, Eslami M, Maleki A (2013) Tetrahedron 69(3):1074–1085CrossRefGoogle Scholar
  55. 55.
    Dekamin MG, Peyman SZ, Karimi Z, Javanshir S, Naimi-Jamal MR, Barikani M (2016) Int J Biol Macromol 87:172–179CrossRefGoogle Scholar
  56. 56.
    Dekamin MG, Azimoshan M, Ramezani L (2013) Green Chem 15:811–820CrossRefGoogle Scholar
  57. 57.
    Dekamin MG, Mokhtari Z (2012) Tetrahedron 68:922–930CrossRefGoogle Scholar
  58. 58.
    Dekamin MG, Alikhani M, Javanshir S (2016) Green Chem Lett Rev 9:96–105CrossRefGoogle Scholar
  59. 59.
    Dekamin MG, Alikhani M, Emami A, Ghafuri H, Javanshir S (2016) J Iran Chem Soc 13:591–596CrossRefGoogle Scholar
  60. 60.
    Dekamin MG, Yaghoubi A, Arefi E, Karimi B (2017) J Colloid Interface Sci 505:956–963CrossRefGoogle Scholar
  61. 61.
    Cho E, Kim DJ (2008) Phys Chem Solids 69:1142–1146CrossRefGoogle Scholar
  62. 62.
    Rostamnia S, Hassankhani A, Golchin Hossieni H, Gholipour B, Xin H (2014) J Mol Catal A Chem 395:463–469CrossRefGoogle Scholar
  63. 63.
    Nasr-Esfahani M, Elhamifar D, Amadeha T, Karimi B (2015) RSC Adv 5:13087–13094CrossRefGoogle Scholar
  64. 64.
    Goli-Jolodar O, Shirini F, Seddighi M (2016) RSC Adv 6:26026–26037CrossRefGoogle Scholar
  65. 65.
    Zarnegar Z, Safari J, Mansouri-Kafroudi Z (2015) Catal Commun 59:216–221CrossRefGoogle Scholar
  66. 66.
    Kumar R, Andhare NH, Shard A, Kumar Sinha R, Kumar Sinha A (2014) RSC Adv 4:19111–19121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Amene Yaghoubi
    • 1
  • Mohammad G. Dekamin
    • 1
    Email author
  • Babak Karimi
    • 2
  1. 1.Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of ChemistryIran University of Science and TechnologyTehranIran
  2. 2.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)GavazangIran

Personalised recommendations