Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

Abstract

Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle synthesis based on the polyol method was selected to synthesize Co2.5Cu particles, which were then supported onto a variety of metal oxide supports (Al2O3, SiO2, TiO2, ZrO2). The catalysts were characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy before and after catalytic testing in a flow reactor at 250 °C and 40 bar. The results show alloyed phases were obtained using the polyol method, resulting in selectivity towards higher alcohols, as high as 11.3% when supported on alumina. Segregation of cobalt and the formation of cobalt carbide were observed in the catalysts after catalytic testing, which may limit performance compared to the desired alloy phase.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chu S, Majumdar A (2012) Nature 488:294

    CAS  Article  Google Scholar 

  2. 2.

    Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y (2009) Catal Today 147:133

    CAS  Article  Google Scholar 

  3. 3.

    Jones CW (2011) Annu Rev Chem Biomol Eng 2:31

    CAS  Article  Google Scholar 

  4. 4.

    Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12:1493

    CAS  Article  Google Scholar 

  5. 5.

    Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) Renew Sust Energ Rev 13:179

    Article  Google Scholar 

  6. 6.

    Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) NREL/TP-510-41168

  7. 7.

    Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514

    CAS  Article  Google Scholar 

  8. 8.

    Wang J, Liu Z, Zhang R, Wang B (2014) J Phys Chem C 118:22691

    CAS  Article  Google Scholar 

  9. 9.

    Chen G, Guo CY, Zhang X, Huang Z, Yuan G (2011) Fuel Process Technol 92:456

    CAS  Article  Google Scholar 

  10. 10.

    Hilmen AM, Xu M, Gines MJL, Iglesia E (1998) Appl Catal A 169:355

    CAS  Article  Google Scholar 

  11. 11.

    Gupta M, Smith ML, Spivey JJ (2011) ACS Catal 1:641

    CAS  Article  Google Scholar 

  12. 12.

    Takeuchi K, Matsukaki T, Arakawa H, Sugi Y (1985) Appl Catal 18:325

    CAS  Article  Google Scholar 

  13. 13.

    Fujimoto K, Oba T (1985) Appl Catal 13:289

    CAS  Article  Google Scholar 

  14. 14.

    Morrill MR, Thao NT, Shou H, Davis RJ, Barton DG, Ferrari D, Agrawal PK, Jones CW (2013) ACS Catal 3:1665

    CAS  Article  Google Scholar 

  15. 15.

    Subramani V, Gangwal SK (2008) Energ Fuel 22:814

    CAS  Article  Google Scholar 

  16. 16.

    Courty P, Durand D, Freund E, Sugier A (1982) J Mol Catal 17:241

    CAS  Article  Google Scholar 

  17. 17.

    Chaumette P, Verdon C, Cruypelinck D (1994) U.S. Pat. 5302622 A, assigned to Institut Francais Du Petrole

  18. 18.

    Volkova GG, Yurieva TM, Plyasova LM, Naumova MI, Zaikovskii VI (2000) J Mol Catal A 158:389

    CAS  Article  Google Scholar 

  19. 19.

    Tsai Y-T, Mo X, Goodwin JG (2012) J Catal 285:242–250

    CAS  Article  Google Scholar 

  20. 20.

    Subramanian ND, Balaji G, Kumar CSSR, Spivey JJ (2009) Catal Today 147:100

    CAS  Article  Google Scholar 

  21. 21.

    Wang J, Chernavskii PA, Wang Y, Khodakov AY (2013) Fuel 103:1111

    CAS  Article  Google Scholar 

  22. 22.

    Mahdavi V, Peyrovi MH, Islami M, Mehr JY (2005) Appl Catal A 281:259

    CAS  Article  Google Scholar 

  23. 23.

    Wang J, Chernavskii PA, Khodakov AY, Wang Y (2012) J Catal 286:51

    CAS  Article  Google Scholar 

  24. 24.

    Mouaddib N, Perrichon V, Martin GA (1994) Appl Catal A 118:63

    CAS  Article  Google Scholar 

  25. 25.

    Prieto G, Beijer S, Smith ML, He M, Au Y, Wang Z, Bruce DA, del Jong KP, Spivey JJ, del Jongh PE (2014) Angew Chem Int Edit 53:6397

    CAS  Article  Google Scholar 

  26. 26.

    Xu XC, Su J, Tian P, Fu D, Dai W, Mao W, Yuan WK, Xu J, Han YF (2015) J Phys Chem C 119:216

    CAS  Article  Google Scholar 

  27. 27.

    Medford AJ, Lausche AC, Abild-Pedersen F, Temel B, Schjødt NC, Nørskov JK, Studt F (2013) Top Catal 57:135

    Article  Google Scholar 

  28. 28.

    Xiao K, Xingzhen Q, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y (2013) Catal Sci Technol 3:1591

    CAS  Article  Google Scholar 

  29. 29.

    Cao A, Liu G, Yue Y, Zhang L, Liu Y (2015) RSC Adv 5:58804

    CAS  Article  Google Scholar 

  30. 30.

    Baker JE, Burch R, Golunski SE (1989) Appl Catal 53:279

    CAS  Article  Google Scholar 

  31. 31.

    Fang YZ, Liu Y, Zhang LH (2011) Appl Catal A 397:183

    CAS  Article  Google Scholar 

  32. 32.

    Yang Y, Qi X, Wang X, Lv D, Yu F, Zhong L, Wang H, Sun Y (2016) Catal Today 270:101

    CAS  Article  Google Scholar 

  33. 33.

    Wang Z, Kumar N, Spivey JJ (2016) J Catal 339:1

    CAS  Article  Google Scholar 

  34. 34.

    Carenco S, Tuxen A, Chintapalli M, Pach E, Escudero C, Ewers TD, Jiang P, Borondics F, Thornton G, Alivisatos AP, Bluhm H, Guo J, Salmeron M (2013) J Phys Chem C 117:6259

    CAS  Article  Google Scholar 

  35. 35.

    Ahmed J, Ganguly A, Saha S, Gupta G, Trinh P, Mugweru AM, Lofland SE, Ramanujachary KV, Ganguli AK (2011) J Phys Chem C 115:14526

    CAS  Article  Google Scholar 

  36. 36.

    Kurihara LK, Chow GM, Schoen PE (1995) Nanostruct Mater 5:607

    CAS  Article  Google Scholar 

  37. 37.

    Tzitzios V, Niarchos D, Margariti G, Fidler J, Petridis D (2005) Nanotechnology 16:287

    CAS  Article  Google Scholar 

  38. 38.

    Silvert PY, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT (1996) J Mater Chem 6:573

    CAS  Article  Google Scholar 

  39. 39.

    Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) J Phys Chem C 115:2656

    CAS  Article  Google Scholar 

  40. 40.

    Denton AR, Ashcroft NW (1991) Phys Rev A 43:3161

    CAS  Article  Google Scholar 

  41. 41.

    Palumbo M, Curiotto S, Battezzati L (2006) Calphad 30:171

    CAS  Article  Google Scholar 

  42. 42.

    Li G, Wang Q, Li D, Lü X, He J (2008) Phys Lett A 372:6764

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Primary support by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis is gratefully acknowledged. Support for Laiza V.P. Mendes was provided by the Capes Foundation and Science without Borders Program (Brazil). Support for Jonathan L. Snider was provided by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. Sample characterization (TEM, XRD, and XPS) was performed at the Stanford Nano Shared Facilities (SNSF) at Stanford University, supported by the National Science Foundation under award ECCS-1542152.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Jaramillo.

Additional information

Laiza V.P. Mendes and Jonathan L. Snider have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 321 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendes, L.V.P., Snider, J.L., Fleischman, S.D. et al. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas. Catal Lett 147, 2352–2359 (2017). https://doi.org/10.1007/s10562-017-2130-5

Download citation

Keywords

  • CO hydrogenation
  • Higher alcohols synthesis
  • Copper
  • Cobalt
  • Syngas