Skip to main content
Log in

Factors Determining the Catalytic Activity of Multi-walled Carbon Nanotubes in the Decomposition of Diacyl Peroxides in Non-aqueous Media (DPDec)

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic activity of multi-walled carbon nanotubes (CNT) with different surface chemistry was investigated in the decomposition of benzoyl and lauroyl peroxides (BP and LP respectively) at room temperature in non-aqueous media. Calculated diffusion coefficients (D eff ) indicate that catalysis is not limited by internal diffusion. CNT demonstrate a moderate catalytic activity that ordering in the raw: N-CNT > CNTini > CNTox. Surface chemistry analysis displays the dependence of catalytic ability of CNT on their surface electron donor properties. Operation stability experiments and TPD–MS analysis reveal that reactions proceeding via the single electron transfer (SET) mechanism.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dondoni A, Massi A (2008) Angew Chem Int Ed 47:4638

    Article  CAS  Google Scholar 

  2. Serp PS, Machado B (2015) Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Dreyer RD, Bielawski CW (2011) Chem Sci 2:1233

    Article  CAS  Google Scholar 

  4. Figueiredo JL, Pereira MFR (2009). In: PS Serp, JL Figueiredo (eds) Carbon materials for catalysis. Wiley, New York, ch 6

    Google Scholar 

  5. Hermenegildo G (2014) Adv Chem 2014:ID906781

    Google Scholar 

  6. Yu H, Peng F, Tan J, Hu X, Wang H, Yang J, Zheng W (2011) Angew Chem Int Ed 50:3978

    Article  CAS  Google Scholar 

  7. Bégin D, Ulrich G, Amadou J, Su DS, Pham-Huu C, Ziessel R (2009) J Mol Catal A 302:119

    Article  Google Scholar 

  8. Chua CK, Pumera V (2015) Chem Eur J 21:12550

    Article  CAS  Google Scholar 

  9. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Chem Rev 114:6179

    Article  CAS  Google Scholar 

  10. Su C, Loh KP (2013) Acc Chem Res 46:2275

    Article  CAS  Google Scholar 

  11. Shi Y, Gan L, Wei X, Jin S, Zhang S, Meng F, Wang Z, Yan C (2000) Org Lett 2:667

    Article  CAS  Google Scholar 

  12. Pacosová L, Kartusch C, Kukula P, Bokhoven JA (2011) ChemCatChem 3:154

    Article  Google Scholar 

  13. Oliveira LCA, Silva CN, Yoshida MI, Lago RM (2004) Carbon 42:2279

    Article  CAS  Google Scholar 

  14. Khalil LB, Girgis BS, Tawfik TA (2001) J Chem Technol Biotechnol 76:1132

    Article  CAS  Google Scholar 

  15. Voitko K, Whitby RLD, Gun’ko V, Bakalinska OM, Kartel MT, Laszlo K, Cundy AB, Mikhalovsky SV (2011) J Coll Interface Sci 361:129

    Article  CAS  Google Scholar 

  16. Costa SA, Tzanov T, Paar A, Gudelj M, Gübitz GM, Cavaco-Paulo A (2001) Enzym Microb Technol 28:815

    Article  CAS  Google Scholar 

  17. Voitko K, Tóth A, Demianenko E, Dobos G, Berke B, Bakalinska O, Grebenyuk A, Tombácz E, Kuts V, Tarasenko Y, Kartel M, László K (2015) J Coll Interface Sci 437:283

    Article  CAS  Google Scholar 

  18. Sun C, Yan G, Lin X, MaS, Li Z (2003) Chem Res Chin 19:355

    CAS  Google Scholar 

  19. Ying Y, Saini RK, Liang F, Sadana AK, Billups WE (2003) Org Lett 5:1471

    Article  CAS  Google Scholar 

  20. Nozaki K, Bartlett PD (1946) JACS 68:1686

    Article  CAS  Google Scholar 

  21. Bartlett PD, Nozaki K (1947) JACS 69:2299

    Article  CAS  Google Scholar 

  22. Walling C, Waits HP, Milovanovic J, Pappiaonnou CJ (1970) JACS 92:4927

    Article  CAS  Google Scholar 

  23. Lyavinets AS (2005) Russ J Gen Chem 75:7593763

    Article  Google Scholar 

  24. Smith WF, Rossiter BW (1969) Tetrahedron 25:2059

    Article  CAS  Google Scholar 

  25. Hasegawa S, Nishimura N (1960) Bull Chem Soc Jpn 33:775

    Article  CAS  Google Scholar 

  26. Kochi JK (1963) JACS 85:1958

    Article  CAS  Google Scholar 

  27. Yoshida M, Morinaga Y, Iyoda M, Kikuchi K, Ikemoto I, Achiba Y (1993) Tetrahedron Lett 34:7629

    Article  CAS  Google Scholar 

  28. Engel PS, Billups WE, Abmayr DW, Tsvaygboym K, Wang R (2008) J Phys Chem C 112:695

    Article  CAS  Google Scholar 

  29. Peng H, Reverdy P, Khabashesku VN, Margrave JL (2003) Chem Commun 3:362

    Article  Google Scholar 

  30. Brichka SY, Prikhod’ko GP, Sementsov YI, BrichkaAV, Dovbeshko GI, Paschuk OP (2004) Carbon 42:2581

    Article  CAS  Google Scholar 

  31. Wang Z, Shirley MD, Meikle ST, Whitby RLD, Mikhalovsky S (2009) Carbon 47:73

    Article  CAS  Google Scholar 

  32. Boehm HP (2002) Carbon 40:145

    Article  CAS  Google Scholar 

  33. Briggs D, Search MP (1992).) Practical surface analysis. Wiley, Chichester

    Google Scholar 

  34. Thiele EW (1939) Ind Eng Chem 31:916

    Article  CAS  Google Scholar 

  35. Zeldovich YB (1939) Acta Phys Chim USSR 10:583

    CAS  Google Scholar 

  36. Datsevich LB (2003) Appl Catal 247/1:101

    Article  Google Scholar 

  37. Datsevich LB (2003) Catal Today 79–80:341

    Article  Google Scholar 

  38. Blümich B, Datsevich LB, Jess A, Oehmichen T, Ren X, Stapf S (2007) Chem Eng J 134:35

    Article  Google Scholar 

  39. Gines G, Zadorin AS, Galas J-C, Fujii T, Estevez-Torres A, Rondelez Y (2017) Nat Nanotechnol. doi:10.1038/NNANO.2016.299

    Google Scholar 

  40. Arlett JL, Roukes ML (2010) J Appl Phys 108:084701

    Article  Google Scholar 

  41. Ahmadi H (2012) Res J Appl Sci 4:2357

    CAS  Google Scholar 

  42. Reid CR, Prausnitz JM, Sherwood TK (1977).) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  43. Toth A, Voitko KV, Bakalinska O, Prykhod’ko GP, Bertoti I, Martinez-Alonso A, Tascon JMD, Gun’ko VM, Laszlo K (2012) Carbon 50:577

    Article  CAS  Google Scholar 

  44. Chu H, Qiu S, Liu L, Zou Y, Xiang C, Zhang H, Xu F, Sun L, Zhou H, Wu G (2014) Dalton Trans 43:5291

    Google Scholar 

  45. Fu T, Liu R, Lv J, Li Z (2014) Fuel Process Technol 122:49

    Article  CAS  Google Scholar 

  46. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379

    Article  CAS  Google Scholar 

  47. Rocha RP, Sousa JPS, Silva AMT, Pereira MFR, Figueiredo JL (2011) Appl Catal B 104:330

    Article  CAS  Google Scholar 

  48. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641

    Article  CAS  Google Scholar 

  49. Rodil SE, Muhl S (2004) Diam Relat Mater 13:1521

    Article  CAS  Google Scholar 

  50. Lin YC, Chiu PW (2010) Appl Phys Lett 96:133110

    Article  Google Scholar 

  51. Morsi SE, Zaki AB, El-Khyami MA (1977) Eur Polym J 13:851

    Article  CAS  Google Scholar 

  52. Umek P, Seo JW, Hernadi K, Mrzel A, Pechy P, Mihailovic DD, Laszlo F (2003) Chem Mater 15:4751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Yu. Sementsov and S. Guravsky for CNT synthesis and T. Kulyk for TPD–MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna V. Voitko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitko, K.V., Haliarnyk, D.M., Bakalinska, O.M. et al. Factors Determining the Catalytic Activity of Multi-walled Carbon Nanotubes in the Decomposition of Diacyl Peroxides in Non-aqueous Media (DPDec). Catal Lett 147, 1966–1976 (2017). https://doi.org/10.1007/s10562-017-2110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2110-9

Keywords

Navigation