Skip to main content
Log in

Enhanced Photocatalysis of g-C3N4 Thermally Modified with Calcium Chloride

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) with improved photocatalysis was prepared via thermal polymerization of dicyandiamide with the assistance of calcium chloride. The photocatalytic activity of the modified product was optimized by changing the weight ratio of calcium chloride to dicyanodiamine, and the final products were characterized by XRD, FTIR, SEM, TEM, XPS, BET, DRS and PL spectra. The results indicate that calcium chloride could lower the crystalline sizes of g-C3N4 due to its coordination effect with the edge ammonia of g-C3N4. The Valence band level decreased after the modification with higher oxidation capability. The photo-generated hole and the superoxide radical are the main active species in the degradation process. As a typical performance, the degradation rate of the modified sample is more than 50 times higher than that of the un-modified carbon nitride. Due to the weakened visible light absorption of the modified catalyst, the degradation of RhB can be mainly attributed to its excitation and enhanced transfer of electrons to the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys 14:1455–1462

    Article  CAS  Google Scholar 

  2. Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM, Youbi A O A., Sun X (2013) Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Interfaces 5:6815–6819

    Article  CAS  Google Scholar 

  3. Liu J, Zhang Y, Lu L, Wu G, Chen W (2012) Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem Commun 48:8826–8828

    Article  CAS  Google Scholar 

  4. Lin J, Pan Z, Wang X (2014) Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustainable. Chem Eng 2:353–358

    Article  CAS  Google Scholar 

  5. Wang Y, Zhang J, Wang X, Antonietti M, Li H (2010) Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. Angew Chem Int Ed 49:3356–3359

    Article  CAS  Google Scholar 

  6. Kroke E, Schwarz M, Horath Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures Part II: alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation. New J Chem 26:508–512

    Article  CAS  Google Scholar 

  7. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  8. Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491

    Article  CAS  Google Scholar 

  9. Gillan EG (2000) Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem Mater 12:3906–3912

    Article  CAS  Google Scholar 

  10. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176

    Article  CAS  Google Scholar 

  11. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu G, Cheng H (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648

    Article  CAS  Google Scholar 

  12. Zhang L, Chen X, Guan J, Jiang Y, Hou T, Mu X (2013) Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater Res Bull 48:3485–3491

    Article  CAS  Google Scholar 

  13. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26:3894–3901

    Article  CAS  Google Scholar 

  14. Lan Z, Zhang G, Wang X (2016) A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl Catal B 192:116–125

    Article  CAS  Google Scholar 

  15. Kondo K, Murakami N, Ye C, Tsubota T, Ohno T (2013) Development of highly efficient sulfur-doped TiO2 photocatalysts hybridized with graphitic carbon nitride. Appl Catal B 142–143:362–367

    Article  Google Scholar 

  16. Liu W, Wang M, Xu C, Chen S, Fu X (2013) Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. J Mol Catal A 368–369:9–15

    Article  Google Scholar 

  17. Ge L, Han C, Xiao X, Guo L (2013) Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int J Hydrogen Energy 38:6960–6969

    Article  CAS  Google Scholar 

  18. Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H (2013) Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl Catal B 129:182–193

    Article  CAS  Google Scholar 

  19. Xu J, Wang Y, Zhu Y (2013) Nanoporous graphitic carbon nitride with enhanced photocatalytic performance. Langmuir 29:10566–10572

    Article  CAS  Google Scholar 

  20. Wirnhier E, Doblinger M, Gunzelmann D, Senker J, Lotsch BV, Schnick W (2011) Poly(triazine imide) with intercalation of lithium and chloride ions [(C3N3)2(NHxLi1–x)3LiCl]: a crystalline 2D carbon nitride network. Chem Eur J 17:3213–3221

    Article  CAS  Google Scholar 

  21. Yuan B, Chu Z, Li G, Jiang Z, Hu T, Wang Q, Wang C (2014) Water-soluble ribbon-like graphitic carbon nitride (g-C3N4): green synthesis, self-assembly and unique optical properties. J Mater Chem C 2:8212–8215

    Article  CAS  Google Scholar 

  22. Zhang M, Bai X, Liu D, Wang J, Zhu Y (2015) Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl Catal B 164:77–81

    Article  CAS  Google Scholar 

  23. Wang J, Zhang C, Shen Y, Zhou Z, Yu J, Li Y, Wei W, Liu S, Zhang Y (2015) Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J Mater Chem A 3:5126–5131

    Article  CAS  Google Scholar 

  24. Thomas A, Fischer A, Goettmann F, Antonietti M, Müller JO, Schlögl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18:4893–4908

    Article  CAS  Google Scholar 

  25. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    Article  CAS  Google Scholar 

  26. Liao G, Chen S, Quan X, Yu H, Zhao H (2012) Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation. J Mater Chem 22:2721–2726

    Article  CAS  Google Scholar 

  27. Liu Q, Zhang J (2013) Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 29:3821–3828

    Article  CAS  Google Scholar 

  28. Khabashesku VN, Zimmerman JL, Margrave JL (2000) Powder synthesis and characterization of amorphous carbon nitride. Chem Mater 12:3264–3270

    Article  CAS  Google Scholar 

  29. Li Y, Zhang J, Wang Q, Jin Y, Huang D, Cui Q, Zou G (2010) Nitrogen-rich carbon nitride hollow vessels: synthesis, characterization, and their properties. J Phys Chem B 114:9429–9434

    Article  CAS  Google Scholar 

  30. Guo Q, Yang Q, Zhu L, Yi C, Zhang S, Xie Y (2004) A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Commun 132:369–374

    Article  CAS  Google Scholar 

  31. Dai H, Gao X, Liu E, Yang Y, Hou W, Kang L, Fan J, Hu X (2013) Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition. Diam Relat Mater 38:109–117

    Article  CAS  Google Scholar 

  32. Ye C, Li J, Li Z, Li X, Fan X, Zhang L, Chen B, Tung C, Wu L (2015) Enhanced driving force and charge separation efficiency of protonated g-C3N4 for photocatalytic O2 evolution. ACS Catal 5:6973–6979

    Article  CAS  Google Scholar 

  33. Chai B, Yan J, Wang C, Ren Z, Zhu Y (2017) Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride. Appl Surf Sci 391:376–383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The whole work was carried out at National University of Defense Technology (NUDT) through a Master Joint Supervision System.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaming Li or Zengyong Chu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4199 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Yan, T., Hu, T. et al. Enhanced Photocatalysis of g-C3N4 Thermally Modified with Calcium Chloride. Catal Lett 147, 1922–1930 (2017). https://doi.org/10.1007/s10562-017-2099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2099-0

Keywords

Navigation