Skip to main content
Log in

Enzyme-Promoted Direct Asymmetric Michael Reaction by Using Protease from Streptomyces griseus

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The direct asymmetric Michael addition of malonates and enones was promoted by protease from Streptomyces griseus for the first time. Yields of up to 84% with enantioselectivities of up to 98% enantiomeric excess (ee) were achieved under optimized conditions.

Graphical Abstract

Protease from Streptomyces griseus (SGP) was used for the first time as a biocatalyst in asymmetric Michael reaction of malonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Sibi MP, Manyem S (2000) Tetrahedron 56:8033–8061

    Article  CAS  Google Scholar 

  2. Krause N, Hoffmann-Röder A (2001) Synthesis 2001:171–196

    Article  Google Scholar 

  3. Alexakis A, Benhaim C (2002) Eur J Org Chem 2002:3221–3236

    Article  Google Scholar 

  4. Christoffers J, Baro A (2003) Angew Chem Int Ed 42:1688–1690

    Article  CAS  Google Scholar 

  5. Jacobsen EN, Pfaltz A, Yamamoto H (1999) Comprehensive asymmetric catalysis. Springer, Berlin

    Book  Google Scholar 

  6. Yamaguchi M, Shiraishi T, Hirama M (1993) Angew Chem Int Ed 32:1176–1178

    Article  Google Scholar 

  7. Yamaguchi M, Shiraishi T, Hirama M (1996) J Org Chem 61:3520–3530

    Article  CAS  Google Scholar 

  8. Halland N, Aburel PS, Jørgensen KA (2003) Angew Chem Int Ed 42:661–665

    Article  CAS  Google Scholar 

  9. Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W (2006) J Am Chem Soc 128:12652–12653

    Article  CAS  Google Scholar 

  10. Dudziński K, Pakulska AM, Kwiatkowski P (2012) Org Lett 14:4222–4225

    Article  Google Scholar 

  11. Wascholowski V, Knudsen KR, Mitchell CET, Ley SV (2008) Chem Eur J 14:6155–6165

    Article  CAS  Google Scholar 

  12. Sasai H, Arai T, Satow Y, Houk KN, Shibasaki M (1995) J Am Chem Soc 117:6194–6198

    Article  CAS  Google Scholar 

  13. Kim YS, Matsunaga S, Das J, Sekine A, Ohshima T, Shibasaki M (2000) J Am Chem Soc 122:6506–6507

    Article  CAS  Google Scholar 

  14. Agostinho M, Kobayashi S (2008) J Am Chem Soc 130:2430–2431

    Article  CAS  Google Scholar 

  15. Kim DY, Huh SC, Kim SM (2001) Tetrahedron Lett 42:6299–6301

    Article  CAS  Google Scholar 

  16. Dere RT, Pal RR, Patil PS, Salunkhe MM (2003) Tetrahedron Lett 44:5351–5353

    Article  CAS  Google Scholar 

  17. Ooi T, Ohara D, Fukumoto K, Maruoka K (2005) Org Lett 7:3195–3197

    Article  CAS  Google Scholar 

  18. Wang Z, Wang Q, Zhang Y, Bao W (2005) Tetrahedron Lett 46:4657–4660

    Article  CAS  Google Scholar 

  19. Li C, Feng X-W, Wang N, Zhou Y-J, Yu X-Q (2008) Green Chem 10:616–618

    Article  CAS  Google Scholar 

  20. Li H-H, He Y-H, Yuan Y, Zhi G (2011) Green Chem 13:185–189

    Article  CAS  Google Scholar 

  21. Brieva R, Crich JZ, Sih CJ (1993) J Org Chem 58:1068–1075

    Article  CAS  Google Scholar 

  22. Xue Y, Li L-P, He Y-H, Guan Z (2012) Sci Rep 2:761. doi:10.1038/srep00761

    Google Scholar 

  23. Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D, Griengl H (2006) Angew Chem Int Ed 45:3454–3456

    Article  CAS  Google Scholar 

  24. Sarma K, Goswami A, Goswami BC (2009) Tetrahedron 20:1295–1300

    Article  CAS  Google Scholar 

  25. Faber K (2011) Biotransformations in organic chemistry: a textbook. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  26. Kourist R (2015) Biocatalysis in organic synthesis. Science of synthesis. Angew Chem Int Ed 54:12547

    Article  CAS  Google Scholar 

  27. Humble MS, Berglund P (2011) Eur J Org Chem 2011:3391–3401

    Article  CAS  Google Scholar 

  28. Wu Q, Liu B-K, Lin X-F (2010) Curr Org Chem 14:1966–1988

    Article  CAS  Google Scholar 

  29. He T, Li K, Wu M-Y, Feng X-W, Wang N, Wang H-Y, Li C, Yu X-Q (2010) J Mol Catal B 67:189–194

    Article  CAS  Google Scholar 

  30. Guan Z, Li L-Y, He Y-H (2015) RSC Adv 5:16801–16814

    Article  CAS  Google Scholar 

  31. Müller M (2012) Adv Synth Catal 354:3161–3174

    Article  Google Scholar 

  32. Busto E, Gotor-Fernández V, Gotor V (2010) Chem Soc Rev 39:4504–4523

    Article  CAS  Google Scholar 

  33. Guan Z, Song J, Xue Y, Yang D-C, He Y-H (2015) J Mol Catal B 111:16–20

    Article  CAS  Google Scholar 

  34. Yang F, Wang Z, Wang H, Zhang H, Yue H, Wang L (2014) RSC Adv 4:25633–25636

    Article  CAS  Google Scholar 

  35. Liang Y-R, Chen X-Y, Wu Q, Lin X-F (2015) Tetrahedron 71:616–621

    Article  CAS  Google Scholar 

  36. Wang J-L, Chen X-Y, Wu Q, Lin X-F (2014) Adv Synth Catal 356:999–1005

    Article  CAS  Google Scholar 

  37. Cai Y, Sun X-F, Wang N, Lin X-F (2004) Synthesis 5:671–674

    Google Scholar 

  38. Cai Y, Wu Q, Xiao Y-M, Lv D-S, Lin XF (2006) J Biotechnol 121:330–337

    Article  CAS  Google Scholar 

  39. Yao S-P, Lu D-S, Wu Q, Cai Y, Xu S-H, Lin XF (2004) Chem Commun 17:2006–2007

    Article  Google Scholar 

  40. Priego J, Ortíz-Nava C, Carrillo-Morales M, López-Munguía A, Escalante J, Castillo E (2009) Tetrahedron 65:536–539

    Article  CAS  Google Scholar 

  41. Carlqvist P, Svedendahl M, Branneby C, Hult K, Brinck T, Berglund P (2005) ChemBioChem 6:331–336

    Article  CAS  Google Scholar 

  42. Svedendahl M, Hult K, Berglund P (2005) J Am Chem Soc 127:17988–17989

    Article  CAS  Google Scholar 

  43. Strohmeier GA, Steinkellner G, Hartner FS, Andryushkova A, Purkarthofer T, Glieder A, Gruber K, Griengl H (2009) Tetrahedron 65:5663–5668

    Article  CAS  Google Scholar 

  44. Xu J-M, Zhang F, Wu Q, Zhang Q-Y, Lin X-F (2007) J Mol Catal B 49:50–54

    Article  CAS  Google Scholar 

  45. Xu K-L, Guan Z, He Y-H (2011) J Mol Catal B 71:108–112

    Article  CAS  Google Scholar 

  46. Kitaume T, Ikeya T, Murata K (1986) J Chem Soc. Chem Commun 17:1331–1333

    Article  Google Scholar 

  47. Kitazume T, Murata K (1988) J Fluorine Chem 39:75–86

    Article  CAS  Google Scholar 

  48. Cai J-F, Guan Z, He Y-H (2011) J Mol Catal B 68:240–244

    Article  CAS  Google Scholar 

  49. López-Iglesias M, Gotor-Fernández V (2015) Chem Rec 15:743–759

    Article  Google Scholar 

  50. Wescott CR, Klibanov AM (1994) Biochim Biophys Acta 1206:1–9

    Article  CAS  Google Scholar 

  51. Habulin M, Sabeder S, Paljevac M, Primozic M, Knez Z (2007) J Supercrit Fluids 43:199–203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21472152 and 21672174), and the Basic and Frontier Research Project of Chongqing (cstc2015jcyjBX0106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Guan or Yan-Hong He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1670 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LL., Li, LP., Xiang, Y. et al. Enzyme-Promoted Direct Asymmetric Michael Reaction by Using Protease from Streptomyces griseus . Catal Lett 147, 2209–2214 (2017). https://doi.org/10.1007/s10562-017-2095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2095-4

Keywords

Navigation