Skip to main content

The Effect of Covering Fe2O3 with a Ga2O3 Overlayer on Water Oxidation Catalysis

Abstract

Developing better electrode materials has attracted significant interest in recent years due to the utilization of electrochemical devices for energy conversion and storage. Specifically, iron (III) oxide (Fe2O3) has been widely considered as an anode material for water oxidation. Recently, major advances were made in improving Fe2O3 catalysis through surface coverage with material overlayers. In order to understand how material overlayers improve performance, we perform Density Functional Theory + U (DFT + U) calculations to model water oxidation catalysis on Fe2O3 partially covered with Ga2O3. We find that Ga2O3 overlayer shows no improvement in the calculated overpotential required for water oxidation on Fe2O3. This result suggests that Ga2O3 overlayer does not alter the catalytic reaction steps directly, but may be involved in other mechanisms related to charge transport and recombination that improve overall performance.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Roger I, Shipman MA, Symes MD (2017) Nat Rev Chem 1:0003

    Article  Google Scholar 

  2. Wang J-J, Hu Y, Toth R, Fortunato G, Braun A (2016) J Mater Chem A 4:2821–2825

    CAS  Article  Google Scholar 

  3. Segev G, Dotan H, Malviya KD, Kay A, Mayer MT, Grätzel M, Rothschild A (2016) Adv Energy Mater 6:1500817

    Article  Google Scholar 

  4. Young KMH, Klahr BM, Zandi O, Hamann TW (2013) Catal Sci Technol 3:1660–1671

    CAS  Article  Google Scholar 

  5. Yatom N, Neufeld O, Caspary Toroker M (2015) J Phys Chem C 119:24789–24795

    CAS  Article  Google Scholar 

  6. Yatom N, Toroker MC (2016) Catal Lett 146:2009–2014

    CAS  Article  Google Scholar 

  7. Iandolo B, Hellman A (2014) Angew Chem Int Ed 53:13404–13408

    CAS  Article  Google Scholar 

  8. Zandi O, Hamann TW (2016) Nat Chem 8:778–783

    CAS  Article  Google Scholar 

  9. Klahr B, Hamann T (2014) J Phys Chem C 118:10393–10399

    CAS  Article  Google Scholar 

  10. Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, Grätzel M (2014) Adv Funct Mater 24:7681–7688

    CAS  Article  Google Scholar 

  11. Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tetreault N, Sivula K, Gratzel M (2011) Energy Environ Sci 4:2512–2515

    CAS  Article  Google Scholar 

  12. Neufeld O, Yatom N, Caspary Toroker M (2015) ACS Catal 5:7237–7243

    CAS  Article  Google Scholar 

  13. Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K (2011) Chem Sci 2:737–743

    CAS  Article  Google Scholar 

  14. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    CAS  Article  Google Scholar 

  15. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    CAS  Article  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  Article  Google Scholar 

  17. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Physical Review B 57:1505–1509

    CAS  Article  Google Scholar 

  18. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) J Phys Condens Matter 9:767

    CAS  Article  Google Scholar 

  19. Mosey NJ, Liao P, Carter EA (2008) J Chem Phys 129:014103

    Article  Google Scholar 

  20. Liao P, Keith JA, Carter EA (2012) J Am Chem Soc 134:13296–13309

    CAS  Article  Google Scholar 

  21. Toroker MC (2014) J Phys Chem C 118:23162–23167

    CAS  Article  Google Scholar 

  22. Neufeld O, Toroker MC (2015) J Phys Chem C 119:5836–5847

    CAS  Article  Google Scholar 

  23. Neufeld O, Toroker MC (2016) J Chem Phys 144:164704

    Article  Google Scholar 

  24. Blöchl PE (1994) Phys Rev B 50:17953–79

    Article  Google Scholar 

  25. Kresse G, Joubert D (1999) Phys Rev B 59:1758–75

    CAS  Article  Google Scholar 

  26. Lad RJ, Henrich VE (1988) Surf Sci 193:81–93

    CAS  Article  Google Scholar 

  27. Nguyen M-T, Seriani N, Piccinin S, Gebauer R (2014) J Chem Phys 140:064703

    Article  Google Scholar 

  28. Nguyen M-T (2015) RSC Adv 5:38601–38609

    CAS  Article  Google Scholar 

  29. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    CAS  Article  Google Scholar 

  30. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) J Electroanal Chem 607:83–89

    CAS  Article  Google Scholar 

  31. Toroker MC, Kanan DK, Alidoust N, Isseroff LY, Liao P, Carter EA (2011) Phys Chem Chem Phys 13:16644–16654

    CAS  Article  Google Scholar 

  32. Finger LW, Hazen RM (1980) J Appl Phys 51:5362–5367

    CAS  Article  Google Scholar 

  33. Marezio M, Remeika JP (1967) J Chem Phys 46:1862–1865

    CAS  Article  Google Scholar 

  34. Gurlo A, Kroll P, Riedel R (2008) Chem – A Eur J 14: 3306–3310.

    CAS  Article  Google Scholar 

  35. Ulman K, Nguyen M-T, Seriani N, Gebauer R (2016) J Chem Phys 144:094701

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Nancy and Stephen Grand Technion Energy Program, the I-CORE Program of the Planning and Budgeting Committee, and The Israel Science Foundation (Grant No. 152/11). We wish to thank Ofer Neufeld and Natav Yatom from the Technion for most helpful discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytal Caspary Toroker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aharon, E., Toroker, M.C. The Effect of Covering Fe2O3 with a Ga2O3 Overlayer on Water Oxidation Catalysis. Catal Lett 147, 2077–2082 (2017). https://doi.org/10.1007/s10562-017-2093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2093-6

Keywords

  • Surfaces
  • DFT
  • Iron oxides
  • Catalysis
  • OER
  • Overlayers