Skip to main content
Log in

High NOx Reduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

NO reduction by CO over a c-ZrO2(110) ultrathin film covering a Cu(110) surface (ZrO2/Cu) has been examined by means of density-functional theory calculations. Spontaneous transfer of electronic charge from Cu to zirconia gives the latter an ability to reduce oxidants. Gaining this excess charge, NO adsorbs and activates on the cationic Zr site of the oxide surface. Thus activated, two NO on adjacent Zr sites can react to form ONNO with an activation energy of 0.39 eV (8.9 kcal/mol), which readily decomposes into N2O and an O adatom. N2O also decomposes into N2 and an O adatom with negligible activation energy of 0.06 eV (1.4 kcal/mol). CO reacts off the O adatoms left on the surface as CO2 with an activation energy of 0.36 eV (8.2 kcal/mol), completing a redox cycle. These results indicate high potentials of oxide-covered metal catalysts (metal@oxide) for NOx abatement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe H (2011) Sci Tech Trends Q 39:1–11

    Google Scholar 

  2. Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207

    Article  CAS  Google Scholar 

  3. Freund H-J, Pacchioni G (2008) Chem Soc Rev 37:2224–2242

    Article  CAS  Google Scholar 

  4. Freund HJ (2010) Chem Eur J 16:9384–9397

    Article  CAS  Google Scholar 

  5. Shaikhutdinov S, Freund HJ (2012) Annu Rev Phys Chem 63:619–633

    Article  CAS  Google Scholar 

  6. Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M, Shaikhutdinov S, Freund HJ (2009) J Catal 266:359–368

    Article  CAS  Google Scholar 

  7. Sun YN, Giordano L, Goniakowski J, Lewandowski M, Qin Z-H, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) Angew Chem Int Ed 49:4418–4421

    Article  CAS  Google Scholar 

  8. Hellman A, Klacar S, Grönbeck H (2009) J Am Chem Soc 131:16636–16637

    Article  CAS  Google Scholar 

  9. Shin H-J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M (2010) Nat Mater 9:442–447

    Article  CAS  Google Scholar 

  10. Shin D, Sinthika S, Choi M, Thapa R, Park N (2014) ACS Catal 4:4074–4080

    Article  CAS  Google Scholar 

  11. Gonchar A, Risse T, Freund H-J, Giordano L, Di Valentin C, Pacchioni G (2011) Angew Chem Int Ed 50:2635–2638

    Article  CAS  Google Scholar 

  12. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) ACS Catal 3:1845–1849

    Article  CAS  Google Scholar 

  13. Koga H, Tada K, Okumura M (2014) Chem Phys Lett 610–611:76–81

    Article  Google Scholar 

  14. Koga H, Tada K, Okumura M (2016) Catal Commun 77:79–82

    Article  CAS  Google Scholar 

  15. Koga H, Tada K, Hayashi A, Ato Y, Okumura M (2017) Chem Lett 46:456–459

    Article  Google Scholar 

  16. Lei Y, Lewandowski M, Sun YN, Fujimori Y, Martynova Y, Groot IMN, Meyer RJ, Giordano L, Pacchioni G, Goniakowski J, Noguera C, Shaikhutdinov S, Freund H-J (2011) ChemCatChem 3:671–674

    Article  CAS  Google Scholar 

  17. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  18. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  19. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  22. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  23. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  24. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  25. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  26. Henkelman G, Jonsson H (1999) J Chem Phys 111:7010–7022

    Article  CAS  Google Scholar 

  27. Heyden A, Bell AT, Keil FJ (2005) J Chem Phys 123:224101

    Article  Google Scholar 

  28. Tada K, Sakata K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M (2013) Chem Phys Lett 579:94–99

    Article  CAS  Google Scholar 

  29. Gurtu S, Rai S, Ehara M, Priyakumar UD (2016) Theor Chem Acc 135:93

    Article  Google Scholar 

  30. Stefanovich EV, Shluger AL, Catlow CRA (1994) Phys Rev B 49:11560–11571

    Article  CAS  Google Scholar 

  31. Maurice V, Salmeron M, Somorjai GA (1990) Surf Sci 237:116–126

    Article  CAS  Google Scholar 

  32. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  33. Bader R (1990) Atoms in molecules: A quantum theory. Oxford University Press, New York

    Google Scholar 

  34. Henkelman G, Arnaldsson A, Jonsson H (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  35. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908

    Article  CAS  Google Scholar 

  36. Tang W, Sanville E, Henkelman G (2009) J Phys 21:084204

    CAS  Google Scholar 

  37. Yu M, Trinkle DR (2011) J Chem Phys 134:064111

    Article  Google Scholar 

  38. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  39. Ding W-C, Gu X-K, Su H-Y, Li W-X (2014) J Phys Chem C 118:12216–12223

    Article  CAS  Google Scholar 

  40. Antlanger M, Mayr-Schmölzer W, Pavelec J, Mittendorfer F, Redinger J, Varga P, Diebold U, Schmid M (2012) Phys Rev B 86:035451

    Article  Google Scholar 

  41. Li H, Choi JIJ, Mayr-Schmölzer W, Weilach C, Rameshan C, Mittendorfer F, Redinger J, Schmid M, Rupprechter G (2015) J Phys Chem C 119:2462–2470

    CAS  Google Scholar 

  42. Kuroda Y, Iwamoto M (2004) Top Catal 28:111–118

    Article  CAS  Google Scholar 

  43. Sajith PK, Shiota Y, Yoshizawa K (2014) ACS Catal 4:2075–2085

    Article  CAS  Google Scholar 

  44. Denise B, Sneeden RPA (1986) Appl Catal 28:235–239

    Article  CAS  Google Scholar 

  45. Chen HW, White JM, Ekerdt JG (1986) J Catal 99:293–303

    Article  CAS  Google Scholar 

  46. Takezawa N, Shimokawabe M, Hiramatsu H, Sugiura H, Asakawa T, Kobayashi H (1987) React Kinet Catal Lett 33:191–196

    Article  CAS  Google Scholar 

  47. Ko JB, Bae CM, Jung YS, Kim DH (2005) Catal Lett 105:157–161

    Article  CAS  Google Scholar 

  48. Okamoto Y, Gotoh H (1997) Catal Today 36:71–79

    Article  CAS  Google Scholar 

  49. Okamoto Y, Gotoh H, Aritani H, Tanaka T, Yoshida S (1997) Faraday Trans 93:3879–3885

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under a management of ‘Elements Strategy Initiative for Catalysts and Batteries (ESICB)’ supported by Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). K. Tada was supported by the JSPS Research Fellowship for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Koga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koga, H., Tada, K., Hayashi, A. et al. High NOx Reduction Activity of an Ultrathin Zirconia Film Covering a Cu Surface: A DFT Study. Catal Lett 147, 1827–1833 (2017). https://doi.org/10.1007/s10562-017-2086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2086-5

Keywords

Navigation