Skip to main content
Log in

The Evaluation of Synthesis Route Impact on Structure, Morphology and LT-WGS Activity of Cu/ZnO/Al2O3 catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Four different techniques (co-precipitation, urea homogeneous precipitation, citrate sol–gel auto-combustion, solid state formate assisted) were used in preparation of a series of Cu/ZnO/Al2O3 catalysts, having a nominal composition: (Cu/Zn)mol = 2.5 and (Cu + Zn)/Almol = 3. The catalytic materials were investigated by various methods. The activity of the CuZnAl catalysts in the LT-WGS process was compared. The results revealed that the co-precipitation technique and subsequent thermal decomposition provided the Cu/ZnO/Al2O3 catalyst with the higher specific surface area and more advantageous surface morphology. It was shown that co-precipitation of hydroxycarbonate precursors at constant pH and their subsequent thermal treatment provided the most active WGS catalyst compared to other techniques.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Appl M (1999) Ammonia—principles and industrial practice; ISBN 3-527-29593-3. Wiley, Hoboken

    Google Scholar 

  2. Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes. Wiley, Hoboken

    Google Scholar 

  3. Behrens M (2009) J Catal 237:24–29

    Article  Google Scholar 

  4. Li J-L, Zhang X-G, Inui T (1996) Appl Catal A 147:23–33

    Article  CAS  Google Scholar 

  5. Kaluza S, Behrens M, Schiefenhövel N, Kniep B, Fischer R, Schlögl R, Muhler M (2011) ChemCatChem 3:189–199

    Article  CAS  Google Scholar 

  6. Behrens M, Brennecke D, Girgsdies F, Kißner S, Trunschke A, Nasrudin N, Zakaria S, Fadilah Idris N, Abd Hamid SB, Kniep B, Fischer R, Busser W, Muhler M, Schlögl R (2011) Appl Catal A 392:93–102

    Article  CAS  Google Scholar 

  7. Baltes C, Vukojević S, Schüth F (2008) J Catal 258:334–344

    Article  CAS  Google Scholar 

  8. Simson G, Prasetyo E, Reiner S, Hinrichsen O (2013) Appl Catal A 450:1–12

    Article  CAS  Google Scholar 

  9. Guo XJ, Li LM, Liu SM, Bao GL, Hou WH (2007) J Fuel Chem Technol 35: 329–333

    Article  CAS  Google Scholar 

  10. Budiman A, Ridwan M, Min Kim S, Choi J-W, Won Yoon Ch, Ha J-M, Jin Suh D, Suh Y-W (2013) Appl Catal A 462–463:220–226

    Article  Google Scholar 

  11. Kowalik P, Konkol M, Antoniak K, Próchniak W, Wiercioch P (2014) J Mol Catal A 392:127–133

    Article  CAS  Google Scholar 

  12. Schur M, Bems B, Dassenoy A, Kassatkine I, Urban J, Wilmes H, Hinrichsen O, Muhler M, Schlögl R (2003) Angew Chem Int Ed 42:3815–3817

    Article  CAS  Google Scholar 

  13. Find J, Moser WR (2003) J Mat Sci 38:1917–1924

    Article  CAS  Google Scholar 

  14. Allahyari S, Haghighi M, Ebadi A, Hosseinzadeh S, Gavam Saeedi H (2014) React Kin Mech Catal 112:101–116

    Article  CAS  Google Scholar 

  15. Kondrat SA, Smith PJ, Wells PP, Chater PA, Carter JH, Morgan DJ, Fiordaliso EM, Warner JB, Davies TE, Lu L, Bartley JK, Taylor SH, Spencer MS, Kiely CJ, Kelly GJ, Park CW, Rosseinsky MJ, Hutchings GJ (2016) Nature 531:83

    Article  CAS  Google Scholar 

  16. Smith P, Kondrat S, Carter J, Chater P, Bartley J, Taylor S, Spencer M, Hutchings G (2017) ChemCatChem. doi:10.1002/cctc.201601603

    Google Scholar 

  17. Pajonk GM (1991) Appl Catal A 72:217–266

    Article  CAS  Google Scholar 

  18. Ning W, Shen H, Liu H (2001) Appl Catal A 211:153–157

    Article  CAS  Google Scholar 

  19. Behrens M, Kißner S, Girsgdies F, Kasatkin I, Hermerschmidt F, Mette K, Ruland H, Muhler M, Schlögl R (2011) Chem Commun 47:1701–1703

    Article  CAS  Google Scholar 

  20. Prieto G, de Jong KP, de Jongh PE (2013) Catal Today 215:142–151

    Article  CAS  Google Scholar 

  21. Atake I, Nishida K, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2007) J Mol Catal A 275:130–138

    Article  CAS  Google Scholar 

  22. Soler-Illia GJ, Candal RJ, Regazzoni AE, Blesa MA (1997) Chem Mater 9:184–191

    Article  Google Scholar 

  23. Fu W, Bao Z, Ding W, Chou K, Li Q (2011) Catal Comm 12:505–509

    Article  CAS  Google Scholar 

  24. Fernández Y, Menéndeza JA, Arenillas A, Fuente E, Peng JH, Zhang ZB, Li W, Zhang ZY (2009) Solid State Ion 180:1372–1378

    Article  Google Scholar 

  25. Shishido T, Yamamoto M, Li D, Tian Y, Morioka H, Honda M, Sano T, Takehir K (2006) Appl Catal A 303:62–71

    Article  CAS  Google Scholar 

  26. Shi L, Ch. Zeng, Jin Y, Wang T, Tsubaki N (2012) Catal Sci Technol 2:2569–2577

    Article  CAS  Google Scholar 

  27. Guo X, Mao D, Lu G, Wang S, Wu G (2011) Catal Com 12:1095–1098

    Article  CAS  Google Scholar 

  28. Lei H, Nie R, Fei J, Hou Z (2012) J Zhejiang Univ-Sci A (Appl Phys Eng) 13:395–406

    Article  CAS  Google Scholar 

  29. Guo X, Mao D, Lu G, Wang S, Wu G (2010) J Catal 271:178–185

    Article  CAS  Google Scholar 

  30. Wang L-C, Liu Y-M, Chen M, Cao Y, He H-Y, Wu G-S, Dai WL, Fan K-N (2007) J Catal 246:193–204

    Article  CAS  Google Scholar 

  31. Hong Z-S, Cao Y, Deng J-F, Fan K-N. (2002) Catal Lett 82:37–44

    Article  CAS  Google Scholar 

  32. Shi L, Shen W, Yang G, Fan X, Jin Y, Zeng C, Matsuda K, Tsubaki N (2013) J Catal 302:83–90

    Article  CAS  Google Scholar 

  33. Shi L, Tan YS, Tsubaki N (2012) ChemCatChem 4:863–871

    Article  CAS  Google Scholar 

  34. Monti DM, Baiker A (1983) J Catal 83:323–335

    Article  CAS  Google Scholar 

  35. Denise B, Sneeden RPA, Beguin B, Cherifi O (1987) Appl Catal A 30:353–363

    Article  CAS  Google Scholar 

  36. Bond GC, Namijo SN (1998) J Catal 118:507–510

    Article  Google Scholar 

  37. Kowalik P, Próchniak W, Konkol M, Borowiecki T (2012) Appl Catal A 423–424:15–20

    Article  Google Scholar 

  38. Jun K-W, Shen W-J, Rama Rao KS, Lee K-W (1998) Appl Catal A 174:231–238

    Article  CAS  Google Scholar 

  39. Suh Y-W, Rhee H-K (2002) Korean J Chem Eng 19(1):17–19

    Article  CAS  Google Scholar 

  40. Sagata K, Imazu N, Yahiro H (2013) Catal Today 201:145–150

    Article  CAS  Google Scholar 

  41. Pernicone N, Fantinel T, Baldan C, Riello P, Pinna F (2003) Appl Catal A 240:199–206

    Article  CAS  Google Scholar 

  42. Gervasini A, Bennici S (2005) Appl Catal A 281:199–205

    Article  CAS  Google Scholar 

  43. Evans JW, Wainwright MS, Bridgewater AJ, Young DJ (1983) Appl Catal 7:75–83

    Article  CAS  Google Scholar 

  44. Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) J Catal 103:79–86

    Article  CAS  Google Scholar 

  45. Dvorak B, Pasek J (1970) J Catal 18:108–114

    Article  CAS  Google Scholar 

  46. Sato S, Takahashi R, Sodesawa T, Yuma K, Obata Y (2000) J Catal 196:195–199

    Article  CAS  Google Scholar 

  47. Kuhl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Chem Eur J 20:1–11

    Article  Google Scholar 

  48. Behrens M, Zander S, Kurr P, Jacobsen N, Senker J, Koch G, Ressler T, Fischer RW, Schlogl R (2013) J Am Chem Soc 135:6061–6068

    Article  CAS  Google Scholar 

  49. Jung H, Yang D-R, Joo O-S, Jung K-D (2010) Bull Korean Chem Soc 31(5):1241–1246

    Article  CAS  Google Scholar 

  50. Prieto G, Zecević J, Friedrich H, de Jong KP, de Jongh PE (2013) Nat Mater 12:34–39

    Article  CAS  Google Scholar 

  51. Li D, Cai Y, Ding Y, Li R, Lu M, Jiang L (2015) Int J Hydr Energy 40:10016–10025

    Article  CAS  Google Scholar 

  52. Brehens M (2015) Catal Today 246:46–54

    Article  Google Scholar 

  53. Kuhl S, Schumann J, Kasatkin I, Havecker M, Schlogl R, Brehens M (2015) Catal Today 246:92–100

    Article  Google Scholar 

  54. Jeong C, Park J, Bae JW, Suh Y-W (2014) Catal Comm 54:1–5

    Article  CAS  Google Scholar 

  55. Lei H, Hou Z, Xie J (2016) Fuel 164:191–198

    Article  CAS  Google Scholar 

  56. Shi L, Tao K, Yang R, Meng F, Xing C, Tsubaki N (2011) Appl Catal A 401:46–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Kowalik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kowalik, P., Antoniak-Jurak, K., Próchniak, W. et al. The Evaluation of Synthesis Route Impact on Structure, Morphology and LT-WGS Activity of Cu/ZnO/Al2O3 catalysts. Catal Lett 147, 1422–1433 (2017). https://doi.org/10.1007/s10562-017-2048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2048-y

Keywords

Navigation