Catalysis Letters

, Volume 147, Issue 5, pp 1252–1262 | Cite as

The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO2

  • Viktor J. Cybulskis
  • Shankali U. Pradhan
  • Juan J. Lovón-Quintana
  • Adam S. Hock
  • Bo Hu
  • Guanghui Zhang
  • W. Nicholas Delgass
  • Fabio H. Ribeiro
  • Jeffrey T. MillerEmail author


Single-site Ga/SiO2 catalysts exhibit up to 99% C3H6 selectivity at 4% propane conversion with an initial rate of 5.4 × 10−4 (mole C3H6) (mole Ga)−1 s−1 during propane dehydrogenation (PDH) at 550 °C. Following pre-treatment in H2 at 550 °C, only four-coordinate, Ga3+–O Lewis acid sites are observed under reaction conditions. At 650 °C in H2, an additional isolated Ga site with lower Ga–O coordination (N Ga−O < 4) is formed and leads to a 30% decrease in the initial PDH rate per total moles of Ga. The PDH rates are equivalent when normalized by the amount of surface, four-coordinate Ga3+–O, regardless of catalyst pre-treatment conditions, which indicates that these isolated Ga3+ centers are the catalytically relevant sites.

Graphical Abstract

Isolated, Lewis acidic Ga3+ cations present as four-coordinate Ga3+–O centers exhibit up to 99% C3H6 selectivity during propane dehydrogenation (PDH) at 550 °C. An additional isolated Ga site with lower Ga–O coordination is formed during H2 treatment at elevated temperatures, but is inactive for PDH and reversibly decomposes under reaction conditions.


Dehydrogenation EXAFS NEXAFS Heterogeneous catalysis XPS 



Support for this research was provided by Qatar National Research Fund No. 13121024. Funding for A.S.H., B.H., G.Z., and J.T.M. was provided by the U.S. Department of Energy, Division of Chemical Sciences, Geosciences, and Biosciences, under contract DE-AC0-06CH1137. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. The authors would like to thank Andrew “Bean” Getsoian for assistance with analysis of Ga K edge XANES spectra. Also, the authors acknowledge Dmitry Zemlyanov in the Birck Nanotechnology Center at Purdue University for performing the XPS characterization.

Supplementary material

10562_2017_2028_MOESM1_ESM.docx (277 kb)
Supplementary material 1 (DOCX 276 KB)


  1. 1.
    Buekens AG, Froment GF (1968) Ind Eng Chem Res 7:435–447Google Scholar
  2. 2.
    Burdick DL, Leffler WL (2001) Petrochemicals in nontechnical language, Pennwell Books, Tulsa, pp. 65–85Google Scholar
  3. 3.
    Sattler, JJHB, Gonzalez-Jimenez ID, Luo L, Stears BA, Malek A, Barton DG, Kilos BA, Kaminsky MP, Verhoeven T, Koers EJ, Baldus M, Weckhuysen BM (2014) Angew Chem Int Ed 53:9251–9256CrossRefGoogle Scholar
  4. 4.
    Sattler, JJHB, Ruiz-Martinez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613–10653CrossRefGoogle Scholar
  5. 5.
    Siirola JJ (2014) AIChE J 60:810–819CrossRefGoogle Scholar
  6. 6.
    Kitagawa H, Sendoda Y, Ono Y (1986) J Catal 101:12–18CrossRefGoogle Scholar
  7. 7.
    Mowry JR, Anderson RF, Johnson JA (1985) Oil Gas J 83:128–131Google Scholar
  8. 8.
    Mole T, Anderson JR, Creer G (1985) Appl Catal 17:141–154CrossRefGoogle Scholar
  9. 9.
    Biscardi JA, Iglesia E (1996) Catal Today 31:207–231CrossRefGoogle Scholar
  10. 10.
    Bhan A, Nicholas Delgass, W. (2008) Catal Rev 50:19–151CrossRefGoogle Scholar
  11. 11.
    Xu BJ, Zheng B, Hua WM, Yue YH, Gao Z (2006) J Catal 239:470–477CrossRefGoogle Scholar
  12. 12.
    Meitzner GD, Iglesia E, Baumgartner JE, Huang ES (1993) J Catal 140:209–225CrossRefGoogle Scholar
  13. 13.
    Biscardi JA, Iglesia E (1999) Phys Chem Chem Phys 1:5753–5759CrossRefGoogle Scholar
  14. 14.
    Schweitzer NM, Hu B, Das U, Kim H, Greeley J, Curtiss LA, Stair PC, Miller JT, Hock AS (2014) ACS Catal 4:1091–1098CrossRefGoogle Scholar
  15. 15.
    Conley MP, Delley MF, Nunez-Zarur F, Comas-Vives A, Coperet C (2015) Inorg Chem 54:5065–5078CrossRefGoogle Scholar
  16. 16.
    Hu B, Getsoian A, Schweitzer NM, Das U, Kim H, Niklas J, Poluektov O, Curtiss LA, Stair PC, Miller JT, Hock AS (2015) J Catal 322:24–37CrossRefGoogle Scholar
  17. 17.
    Hu B, Schweitzer NM, Zhang GH, Kraft SJ, Childers DJ, Lanci MP, Miller JT, Hock AS (2015) ACS Catal 5:3494–3503CrossRefGoogle Scholar
  18. 18.
    Rane N, Overweg, AR, Kazansky VB, van Santen RA, Hensen EJM (2006) J Catal 239:478–485CrossRefGoogle Scholar
  19. 19.
    Hensen EJM, Garcia-Sanchez M, Rane N, Magusin P, Liu PH, Chao KJ, van Santen RA (2005) Catal Lett 101:79–85CrossRefGoogle Scholar
  20. 20.
    Getsoian AB, Das U, Bunquin JC, Zhang G, Gallagher JR, Hu B, Cheah S, Schaidle JA, Ruddy DA, Hensley JE, Krause TR, Curtiss LA, Miller JT, Hock AS (2016) Catal Sci Technol 6:6339–6353CrossRefGoogle Scholar
  21. 21.
    Cybulskis VJ, Harris JW, Zvinevich Y, Ribeiro FH, Gounder R (2016) Rev Sci Instrum 87:1031011–1031018CrossRefGoogle Scholar
  22. 22.
    Nishi K, Shimizu K, Takamatsu M, Yoshida H, Satsuma A, Tanaka T, Yoshida S, Hattori T (1998) J Phys Chem B 102:10190–10195CrossRefGoogle Scholar
  23. 23.
    Ressler T (1998) J Synchrotron Radiat 5:118–122CrossRefGoogle Scholar
  24. 24.
    Chao SS, Takagi Y, Lucovsky G, Pai P, Custer RC, Tyler JE, Keem JE (1986) Appl Surf Sci 26:575–583CrossRefGoogle Scholar
  25. 25.
    Gross T, Ramm M, Sonntag H, Unger W, Weijers HM, Adem EH (1992) Surf Interface Anal 18:59–64CrossRefGoogle Scholar
  26. 26.
    Gomez-Quero S, Tsoufis T, Rudolf P, Makkee M, Kapteijn F, Rothenberg G (2013) Catal Sci Technol 3:962–971CrossRefGoogle Scholar
  27. 27.
    Stull DR, Westburn EF, Sinke GC (1969) The chemical thermodynamics of organic compounds, Wiley, New York, pp. 198–329Google Scholar
  28. 28.
    Tamura M, Shimizu K, Satsuma A (2012) Appl Catal A: Gen 433:135–145CrossRefGoogle Scholar
  29. 29.
    Vimont A, Lavalley JC, Sahibed-Dine A, Arean CO, Delgado MR, Daturi M (2005) J Phys Chem B 109:9656–9664CrossRefGoogle Scholar
  30. 30.
    Emeis CA (1993) J Catal 141:347–354CrossRefGoogle Scholar
  31. 31.
    Parrillo DJ, Adamo AT, Kokotailo GT, Gorte RJ (1990) Appl Catal 67:107–118CrossRefGoogle Scholar
  32. 32.
    Collins SE, Baltanas MA, Fierro JLG, Bonivardi AL (2002) J Catal 211:252–264CrossRefGoogle Scholar
  33. 33.
    Sulikowski B, Olejniczak Z, Corberan VC (1996) J Phys Chem 100:10323–10330CrossRefGoogle Scholar
  34. 34.
    Kazansky VB, Subbotina IR, van Santen RA, Hensen EJM (2005) J Catal 233:351–358CrossRefGoogle Scholar
  35. 35.
    Kazansky VB, Subbotina IR, van Santen RA, Hensen EJM (2004) J Catal 227:263–269CrossRefGoogle Scholar
  36. 36.
    Collins SE, Baltanas MA, Bonivardi AL (2005) Langmuir 21:962–970CrossRefGoogle Scholar
  37. 37.
    Vecchietti J, Baltanás MA, Gervais C, Collins SE, Blanco G, Matz O, Calatayud M, Bonivardi A (2017) J Catal 345:258–269CrossRefGoogle Scholar
  38. 38.
    Pulham CR, Downs AJ, Goode MJ, Rankin DWH, Robertson HE (1991) J Am Chem Soc 113:5149–5162CrossRefGoogle Scholar
  39. 39.
    Kanazirev V, Price GL, Tyuliev G (1992) Zeolites 12:846–850CrossRefGoogle Scholar
  40. 40.
    Serykh AI, Amiridis MD (2009) Surf Sci 603:2037–2041CrossRefGoogle Scholar
  41. 41.
    Cossu G, Ingo GM, Mattogno G, Padeletti G, Proietti GM (1992) Appl Surf Sci 56–8:81–88CrossRefGoogle Scholar
  42. 42.
    Breeze PA, Hartnagel HL, Sherwood PMA (1980) J Electrochem Soc 127:454–461CrossRefGoogle Scholar
  43. 43.
    Carli R, Bianchi CL (1994) Appl Surf Sci 74:99–102CrossRefGoogle Scholar
  44. 44.
    Carli R, Bianchi CL, Giannantonio R, Ragaini V (1993) J Mol Catal 83:379–389CrossRefGoogle Scholar
  45. 45.
    Scharmann F, Cherkashinin G, Breternitz V, Knedlik C, Hartung G, Weber T, Schaefer JA (2004) Surf Interface Anal 36:981–985CrossRefGoogle Scholar
  46. 46.
    Nesterenko NS, Ponomoreva OA, Yuschenko VV, Ivanova II, Testa F, Di Renzo F, Fajula F (2003) Appl Catal A: Gen 254:261–272CrossRefGoogle Scholar
  47. 47.
    Saito M, Watanabe S, Takahara I, Inaba M, Murata K (2003) Catal Lett 89:213–217CrossRefGoogle Scholar
  48. 48.
    Shee D, Sayari A (2010) Appl Catal A 389:155–164CrossRefGoogle Scholar
  49. 49.
    Meriaudeau P, Naccache C (1990) J Mol Catal 59:L31–L36CrossRefGoogle Scholar
  50. 50.
    Iglesia E, Baumgartner JE, Price GL (1992) J Catal 134:549–571CrossRefGoogle Scholar
  51. 51.
    Gonzales NO, Chakraborty AK, Bell AT (1999) Top Catal 9:207–213CrossRefGoogle Scholar
  52. 52.
    Price GL, Kanazirev V (1990) J Catal 126:267–278CrossRefGoogle Scholar
  53. 53.
    Joshi YV, Thomson KT (2007) J Catal 246:249–265CrossRefGoogle Scholar
  54. 54.
    Joshi YV, Thomson KT (2005) Catal Today 105:106–121CrossRefGoogle Scholar
  55. 55.
    Olsbye U, Virnovskaia A, Prytz O, Tinnemans SJ, Weckhuysen BM (2005) Catal Lett 103:143–148CrossRefGoogle Scholar
  56. 56.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:223–232CrossRefGoogle Scholar
  57. 57.
    Le Van Mao R, Dufresne L (1989) Appl Catal 52:1–18CrossRefGoogle Scholar
  58. 58.
    Frash MV, van Santen RA (2000) J Phys Chem A 104:2468–2475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Viktor J. Cybulskis
    • 1
  • Shankali U. Pradhan
    • 1
  • Juan J. Lovón-Quintana
    • 1
  • Adam S. Hock
    • 2
    • 3
  • Bo Hu
    • 2
  • Guanghui Zhang
    • 3
  • W. Nicholas Delgass
    • 1
  • Fabio H. Ribeiro
    • 1
  • Jeffrey T. Miller
    • 1
    • 3
    Email author
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryIllinois Institute of TechnologyChicagoUSA
  3. 3.Chemical Sciences and Engineering DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations