Microspherical ReS2 as a High-Performance Hydrodesulfurization Catalyst

Abstract

An unsupported microspherical ReS2 catalyst, consisting in self-assembled nano-layers, was evaluated in the hydrodesulfurization (HDS) of 3-methylthiophene showing an excellent catalytic activity. The samples were characterized by X-ray diffraction, scanning electron microscopy, high resolution electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. These techniques revealed that the rhenium disulfide layers are confined to a 3D hierarchical structure with different stacking, slab size and bending, according to the annealing temperature (400 or 800 °C). The presence of a defect-rich structure in the microspheres, with short and randomly-orientated ReS2 slabs, results in the exposure of additional edge sites, which improve the catalytic performance of this material. This microspherical ReS2 composite, with good HDS performance, is a promising catalyst for the desulfurization of fuel oils; the solvothermal reaction conditions are also useful to tune and create exotic morphologies for the design of new ReS2 catalysts.

Graphical Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Sepúlveda C, García R, Reyes P, Ghampson I, Fierro J, Laurenti D, Vrinat M, Escalona N (2014) Appl Catal A 475:427

    Article  Google Scholar 

  2. 2.

    Lui H, Xu B, Lim JM, Yin J, Miao F, Duan CG, Wan XG (2016) Phys Chem Chem Phys 18:14223

    Google Scholar 

  3. 3.

    Ho T, Shen Q, McConnachie J, Kliewer C (2010) J Catal 276:114

    CAS  Article  Google Scholar 

  4. 4.

    Yang L, Lu S, Wang H, Shao Q, Liao F, Shao M (2017) Electrochim Acta 228:268

    CAS  Article  Google Scholar 

  5. 5.

    Al-Dulaimi N, Lewis DJ, Zhong XL, Malik MA, O’Brien P (2016) J Mater Chem C 4:2312

    CAS  Article  Google Scholar 

  6. 6.

    Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tenne R, Rao C (2015) Dalton Trans 44:16399

    CAS  Article  Google Scholar 

  7. 7.

    Jacobsen CJ, Törnqvist E, Topsøe H (1999) Catal Lett 63:179

    CAS  Article  Google Scholar 

  8. 8.

    Harris S, Chianelli R (1984) J Catal 86:400

    CAS  Article  Google Scholar 

  9. 9.

    Wang L, Sofer Z, Luxa J, Sedmidubský D, Ambrosi A, Pumera M (2016) Electrochem Commun 63:39

    Article  Google Scholar 

  10. 10.

    Chianelli R (1984) Cat Rev Sci Eng 26:361

    CAS  Article  Google Scholar 

  11. 11.

    Wildervanck JC, Jellineck F (1971) J Less Common Met 24:73

    CAS  Article  Google Scholar 

  12. 12.

    Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang YS, Ho CH, Yan J, Ogletree DF, Aloni S, Ji J, Li S, Li J, Peeters FM, Wu J (2014) Nat Commun 5:3252

    Article  Google Scholar 

  13. 13.

    Hafeez M, Gan L, Li H, Ma Y, Zhai T (2016) Adv Funct Mater 26:4551

    CAS  Article  Google Scholar 

  14. 14.

    Yella A, Therese HA, Zink N, Panthöfer M, Tremel W (2008) ChemMater 20:3587

    CAS  Google Scholar 

  15. 15.

    Tu W, Denizot B (2007) J Colloid Interface Sci 310:167

    CAS  Article  Google Scholar 

  16. 16.

    Tang N, Tu W (2009) J MagnMagn Mater 321:3311

    CAS  Article  Google Scholar 

  17. 17.

    Brorson M, Hansen TW, Jacobsen CJ (2002) J Am Chem Soc 124: 11582

    CAS  Article  Google Scholar 

  18. 18.

    Aliaga JA, Araya JF, Lozano H, Benavente E, Alonso-Nuñez G, González G (2015) Mater Chem Phys 151:372

    CAS  Article  Google Scholar 

  19. 19.

    Qi F, Cheng Y, Zheng B, He J, Li Q, Wang X, Yu B, Lin J, zhang J, Li P, Zhang W (2017) J Mater Sci 52:3622

    CAS  Article  Google Scholar 

  20. 20.

    Zhang Q, Tan S, Mendes RG, Sun Z, Chen Y, Kong X, Xue Y, Rümmeli MH, Wu X, Chen S (2016) Adv Mater 28:2616

    CAS  Article  Google Scholar 

  21. 21.

    Zhang Q, Wang W, Kong X, Mendes RG, Fang L, Xue Y, Xiao Y, Rümmeli MH, Chen MH, Fu L (2016) J Am Chem Soc 138:11101

    CAS  Article  Google Scholar 

  22. 22.

    Mdleleni MM, Hyeon T, Suslick KS (1998)J Am Chem Soc 120:6189

    CAS  Article  Google Scholar 

  23. 23.

    Zhu G, Wang W, Wu K, Tan S, Tan L, Yang Y (2016) Ind Eng Chem Res 55:12173

    CAS  Article  Google Scholar 

  24. 24.

    Farag H, El-Hendawy ANA, Sakanishi K, Kishida M, Mochida I (2009) Appl Catal B 91:189

    CAS  Article  Google Scholar 

  25. 25.

    Farag H, Al-Megrem H (2009) J Colloid Interface Sci 332:425

    CAS  Article  Google Scholar 

  26. 26.

    Lamfers HJ, Meetsma A, Wiegers G, De Boer J (1996) J Alloy Compd 241:34

    CAS  Article  Google Scholar 

  27. 27.

    Wu Z, Wang D, Sun A (2010) J Mater Sci 45:182

    CAS  Article  Google Scholar 

  28. 28.

    Aliaga JA, Alonso-Núñez G, Zepeda T, Araya JF, Rubio PF, Bedolla-Valdez Z, Paraguay-Delgado F, Farías M, Fuentes S, González G (2016) J Non-Cryst Solids 447:29

    CAS  Article  Google Scholar 

  29. 29.

    Escalona N, Yates M, Avila P, Lopez Agudo A, Fierro J, Ojeda J, Gil Llambias F (2003) Appl Catal A 240:151

    CAS  Article  Google Scholar 

  30. 30.

    Bouyssieres L, Flores L, Poblete J, Gil Llambias F (1986) Appl Catal 23:271

    CAS  Article  Google Scholar 

  31. 31.

    Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G (2012) Appl Catal A 29:92

    Article  Google Scholar 

  32. 32.

    Guzmán MA, Huirache-Acuña R, Loricera CV, Hernandez JR, Díaz de León JN, De los Reyes JA, Pawelec B (2013) Fuel 103:321

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank CONICYT (FONDECYT GRANT 1131112), Núcleo Milenio de Magnetismo, CEDENNA, CONACYT (Projects 174689 and 117373), PAPIIT (Project IN104714-3), Supercómputo-UNAM (LANCAD-UNAM-DGTIC-041)  and CONICYT Postdoctoral Project 3170761 for the different financial supports. We are also very grateful to David A. Domínguez for valuable technical help obtaining the XPS spectra.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. A. Aliaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 147 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliaga, J.A., Zepeda, T.N., Pawelec, B.N. et al. Microspherical ReS2 as a High-Performance Hydrodesulfurization Catalyst. Catal Lett 147, 1243–1251 (2017). https://doi.org/10.1007/s10562-017-2024-6

Download citation

Keywords

  • Rhenium disulfide
  • Hidrodesulfurization
  • Heterogeneous catalysis
  • Solvothermal synthesis