Skip to main content
Log in

Effect of Reaction Conditions on the Catalytic Dehydration of Methanol to Dimethyl Ether Over a K-modified HZSM-5 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of temperature, pressure, space velocity and feed-stream water content in the synthesis of dimethyl ether from methanol over a K-HZSM-5 catalyst was evaluated with respect to the activity, physicochemical properties and deactivation of the catalyst. Increasing the water content in the feed stream allowed to proceed the reaction over a wider temperature range. Despite a decrease in the methanol conversion at low temperatures (<250 °C), methanol conversions and dimethyl ether selectivities of more than 50 and 99%, respectively, were achieved. It was found that deactivation of the catalyst due to coke formation or dealumination occurred depending on the amount of water in the feed stream. Coke as covering the catalyst particle surface deactivates the catalyst. Aromatic compounds entrapped in the pores affect acidity, pore volume, surface area and also conversion. Although catalyst deactivation due to dealumination caused a 20% decrease in the methanol conversion, the stability of K-HZSM-5 is expected to be improved by the addition of a proper amount of water in the feed.

Graphical Abstract

MTD reaction over K-HZSM-5 at a reaction temperature of 340 °C with various LHSV-pressure-water content conditions for 300 h on stream; (red) 10-10-0, (blue) 10-10-50, (black) 20-10-50, where the three numbers correspond LHSV (h−1)-pressure (bar)-percentage of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fleisch T, McCarthy C, Basu A, Udovich C, Charbonneau P, Slodowske W (1995) SAE Trans J Fuel Lubr 104(4):54–59

    Google Scholar 

  2. Semelsberger TA, Borup RL, Greene HL (2006) J Power Sources 156:497–511

    Article  CAS  Google Scholar 

  3. Zannis TC, Hountalas DT (2004) Energy Fuels 18:659–666

    Article  CAS  Google Scholar 

  4. Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498

    Article  CAS  Google Scholar 

  5. Sun J, Yang G, Yoneyama Y, Tsubaki N (2014) ACS Catal 4:3346–3356

    Article  CAS  Google Scholar 

  6. Sun M, Yu L, Sun C, Song Y (2003) Gen Rev 20:695–699

    CAS  Google Scholar 

  7. Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Chem Eng Process 82:150–172

    Article  CAS  Google Scholar 

  8. Tang Q, Xua H, Zheng Y, Wang J, Li H, Zhang J (2012) Appl Catal A 413–414:36–42

    Article  Google Scholar 

  9. Baek SC, Lee YJ, Jun KW, Hong SB (2009) Energy Fuels 23:593–598

    Article  CAS  Google Scholar 

  10. Jin D, Zhu B, Hou Z, Fei J, Lou H, Zheng X (2007) Fuel 86:2707–2713

    Article  CAS  Google Scholar 

  11. Clausen LR, Elmegaard B, Ahrenfeldt J, Henriksen U (2011) Energy 36(10):5805–5814

    Article  CAS  Google Scholar 

  12. DeWilde JF, Chiang H, Hickman DA, Ho CR, Bhan A (2013) ACS Catal 3:798–807

    Article  CAS  Google Scholar 

  13. Akarmazyan SS, Panagiotopoulou P, Kambolis A, Papadopoulou C (2014) Appl Catal B 145:136–148

    Article  CAS  Google Scholar 

  14. Jun KW, Lee HS, Roh HS, Park SE (2002) Bull Korean Chem Soc 23:803–806

    Article  CAS  Google Scholar 

  15. Blaszkowski SR, van Santen RA (1997) J Phys Chem B 101:2292–2305

    Article  CAS  Google Scholar 

  16. Laugel G, Nitsch X, Ocampo F, Louis B (2011) Appl Catal A 402:139–145

    Article  CAS  Google Scholar 

  17. Rutkowska M, Macina D, Mirocha-Kubień N, Piwowarska Z, Chmielarz L (2015) Appl Catal B 174–175:336–343

    Article  Google Scholar 

  18. Moses PG, Nørskov JK (2013) ACS Catal 3:735–745

    Article  CAS  Google Scholar 

  19. Carr RT, Neurock M, Iglesia E (2011) J Catal 278:79–93

    Article  Google Scholar 

  20. Ha KS, Lee YJ, Bae JW, Kim YW, Woo MH, Kim HS, Park MJ, Jun K-W (2011) Appl Catal A 395:95–106

    Article  CAS  Google Scholar 

  21. Schulz H (2010) Catal Today 154:183–194

    Article  CAS  Google Scholar 

  22. Zhang G, Zhang X, Bai T, Chen T, Fan W (2015) J Energy Chem 24:108–118

    Article  Google Scholar 

  23. Guisnet M, Magnoux P (2001) Appl Catal A 212:83–96

    Article  CAS  Google Scholar 

  24. Kim S, Sasmaz E, Lauterbach J (2015) Appl Catal B 168:212–219

    Article  Google Scholar 

  25. Ibáñez M, Gamero M, Ruiz-Martínez J, Weckhuysen BM, Aguayo AT, Bilbao J, Castaño P (2016) Catal Sci Technol 6:296–306

    Article  Google Scholar 

  26. Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Appl Catal A 276:251–255

    Article  CAS  Google Scholar 

  27. Kim SD, Baek SC, Lee YJ, Jun KW, Kim MJ, Yoo IS (2006) Appl Catal A 309:139–143

    Article  CAS  Google Scholar 

  28. Zhang L, Wang J, Wu P, Hou Z, Fei J, Zheng X (2010) Chin J Catal 31:987–992

    Article  CAS  Google Scholar 

  29. Hassanpour S, Yaripour F, Taghizadeh M (2010) Fuel Process Technol 91:1212–1221

    Article  CAS  Google Scholar 

  30. Li H, He S, Ma K, Wu Q, Jiao Q, Sun K (2013) Appl Catal B 450:152–159

    Article  CAS  Google Scholar 

  31. Rutkowska M, Macina D, Mirocha-Kubien N, Piwowarska Z, Chmielarz L (2015) Appl Catal A 174:336–343

    Article  Google Scholar 

  32. Lee YJ, Kim JM, Bae JW, Shin CH, Jun KW (2009) Fuel 88:1915–1921

    Article  CAS  Google Scholar 

  33. Pérez-Uriarte P, Ateka A, Aguayo AT, Gayubo AG, Bilbao J (2016) Chem Eng J 302:801–810

    Article  Google Scholar 

  34. Olsbye U, Saure OV, Muddada NB, Bordiga S, Lamberti C, Nilsen MH, Lillerud KP, Svelle S (2011) Catal Today 171:211–220

    Article  CAS  Google Scholar 

  35. ASTM Standard D5758-01, Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction 2011. ASTM International, West Conshohocken. doi:10.1520/D5758-01R11E01

  36. Alvarez AG, Viturro H, Bonetto RD (1992) Mater Chem Phys 32:135–140

    Article  CAS  Google Scholar 

  37. Kim S, Sasmaz E, Lauterbach J (2015) Appl Catal B 168–169:212–219

    Article  Google Scholar 

  38. Liu Y, Mîller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher JA (2016) Angew Chem 128:5817–5820

    Article  Google Scholar 

  39. Prasad YS, Bakhshi NN, Mathews JF, Eager RL (1986) Can J Chem Eng 64(2):278–284

    Article  CAS  Google Scholar 

  40. Gayubo AG, Aguayo AT, Morán AL, Olazar M, Bilbao J (2002) AIChE J 48:1561–1571

    Article  CAS  Google Scholar 

  41. Katikaneni SPR, Adjaye JD, Bakhshi NN (1995) Energy Fuels 9 (4):599–609. doi:10.1021/ef00052a005

    Article  CAS  Google Scholar 

  42. Katikaneni SPR, Adjaye JD, Bakhshi NN (1995) Can J Chem Eng 73(4):484–497

    Article  CAS  Google Scholar 

  43. Pazè C, Sazak B, Zecchina A, Dwyer J (1999) J Phys Chem B 103:9978–9986

    Article  Google Scholar 

  44. Hunger M, Weitkamp J (2001) Angew Chem Int Ed 40:2954–2971

    Article  CAS  Google Scholar 

  45. Chung Y-M, Mores D, Weckhuysen BM (2011) Appl Catal A 404(1):12–20

    Article  CAS  Google Scholar 

  46. Castaño P, Gutiérrez A, Hita I, Arandes JM, Aguayo AsT, Bilbao J (2012) Energy Fuels 26 (3):1509–1519

    Article  Google Scholar 

  47. Flego C, Kiricsi I, Parker WO Jr, Clerici MG (1995) Appl Catal A 124:107–119

    Article  CAS  Google Scholar 

  48. Lisovskii AE, Aharoni C (1994) Catal Rev Sci Eng 36:25–74

    Article  CAS  Google Scholar 

  49. Nederlof C, Kapteijn F, Makkee M (2012) Appl Catal A 29:163–173

    Article  Google Scholar 

  50. Dell LAO, Savin SLP, Chadwick AV, Smith ME (2007) Solid State Nucl Mag Reson 134:83-102

    Google Scholar 

  51. Muller M, Harvey G, Prins R (2000) Microporous Mesoporous Mater 34(2):135–147. doi:10.1016/s1387-1811(99)00167-5

    Article  CAS  Google Scholar 

  52. Meinhold RH, Bibby DM (1990) Zeolites 10:146–150

    Article  CAS  Google Scholar 

  53. Dedecek J, Balgova V, Pashkova V, Klein P, Wichterlova B (2012) Chem Mater 24(16):3231–3239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) under “Energy Efficiency & Resources Programs” (Project No. 2012T100201578) of the Ministry of Trade, Industry and Energy, and the core KRICT project (KK1601-B00) from Korea Research Institute of Chemical Technology and C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M3D3A1064901). The authors would like to acknowledge Korea Basic Science Institute (KBSI) at western Seoul center for 27Al MAS NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Won Jun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, Y.T., Zhang, C. et al. Effect of Reaction Conditions on the Catalytic Dehydration of Methanol to Dimethyl Ether Over a K-modified HZSM-5 Catalyst. Catal Lett 147, 792–801 (2017). https://doi.org/10.1007/s10562-017-1981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1981-0

Keywords

Navigation