Skip to main content
Log in

Dynamics of the Activity and Physicochemical Characteristics of Pt/WO4 2−–ZrO2 Catalysts in the Hydroisomerization of Heptane and Heptane–Benzene Mixtures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The dynamics of the activity and selectivity of bifunctional platinum tungstated zirconia PtWZ catalyst in the hydroisomerization of n-heptane and heptane–benzene mixture is discussed in the paper. The change in the properties of the catalyst before and after reaction were characterized using different techniques. The catalyst showed high efficiency for the hydroisomerization of heptane and heptane–benzene mixture, however, deactivation occurred with time on stream, more significantly when benzene was present in the reaction mixture. The carbonaceous matter was deposited on the catalyst (up to 0.8%) during the hydroisomerization reaction. Predominantly aliphatic carbonaceous «poly-CxHy» species, much less oxidized and little aromatic «graphite-like» species were identified by XPS spectra on the catalyst after the heptane isomerization. In the presence of benzene, the formation of «graphite-like» matter increased progressively as temperature increased. However, no appreciable changes in the bulk properties of the t-ZrO2 matrix (phase composition, specific surface area, pore volume, pore size distribution) and in the state of platinum component were revealed, though an increased extent of W6+ to W5+ reduction was detected by XPS spectra irrespectively of the reaction conditions. The deactivation of the PtWZ catalyst was suggested to result from the blocking the active centers by carbonaceous deposits, the deactivation of the acidic centers being more pronounced as compared to metallic ones. All the carbonaceous deposits were burned-off completely below 450–500 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson GC, Rosin RR, Stine MA, Hunter MJ (2004) NPRA Annual Meeting, M-04-46

  2. Grau JM, Vera CR, Benitez VM, Yori JC (2008) Energy Fuels 22:1680–1686

    Article  CAS  Google Scholar 

  3. Benitez VM, Grau JM, Yori JC, Pieck CL, Vera CR (2006) Energy Fuels 20:1791–1798

    Article  CAS  Google Scholar 

  4. Shakun AN, Fedorova ML, Karpenko TV, Demidova EV (2016) Technopolis XXI 33:24–26

    Google Scholar 

  5. Hattori H, Ono Y (2015) Solid acid catalysis: from fundamentals to applications. Pan Stanford Publishing, Singapore

  6. Kuznetsova LI, Kazbanova AV, Kuznetsov PN (2012) Pet Chem 52(2):86–90

    Article  CAS  Google Scholar 

  7. Ahmad R, Melsheimer J, Jentoft FC, Schlogl R (2003) J Catal 218:365–374

    Article  CAS  Google Scholar 

  8. Grau JM, Vera CR, Parera JM (2002) Appl Catal A 227:217–230

    Article  CAS  Google Scholar 

  9. Resofszki G, Muhler M, Sprenger S, Wild U, Paal Z (2003) Appl Catal A 240:71–81

    Article  CAS  Google Scholar 

  10. Miyaji A, Ohnishi R, Okuhara T (2004) Appl Catal A 262:143–148

    Article  CAS  Google Scholar 

  11. Okuhara T (2004) J Jpn Petrol Inst 47(1):1–10

    Article  CAS  Google Scholar 

  12. Busto M, Grau JM, Vera CR (2010) Appl Catal A 387:35–44

    Article  CAS  Google Scholar 

  13. Smolikov MD, Shkurenok VA, Yablokova SS, Kir’yanov DI, Paukshtis EA, Leontieva NN, Belyi AS, Drozdov VA (2016) Catal Ind 16(5):51–59

    Google Scholar 

  14. Triwahyono S, Yamada T, Hattori H (2003) Appl Catal A 242:101–109

    Article  CAS  Google Scholar 

  15. Barton DV, Soled SL, Meitzner GD, Fuentes GA, Iglesia E (1999) J Catal 181:57–72

    Article  CAS  Google Scholar 

  16. Ross-Medgaarden EI, Knowles WV, Kim T, Wong MS, Zhou W, Kiely C, Wachs I (2008) J Catal 256:108–125

    Article  CAS  Google Scholar 

  17. Cortes-Jacome MA, Toledo-Antonio JA, Armendariz H, Hernandez I, Bokhimi X (2002) J Solid State Chem 164:339–344

    Article  CAS  Google Scholar 

  18. Cortes-Jacome MA, Angeles-Chavez C, Lopes-Salinas E (2007) Appl Catal A 318:178–189

    Article  CAS  Google Scholar 

  19. Cortes-Jacome MA, Angeles-Chavez C, Bokhimi X, Toledo-Antonio JA (2006) J Solid State Chem 179:2663–2673

    Article  CAS  Google Scholar 

  20. Kuznetsov PN, Kazbanova AV, Kuznetsova LI, Kovalchuk VI, Mikhlin YL (2014) Reac Kinet Mech Cat 113:69–84

    Article  CAS  Google Scholar 

  21. Kuznetsov PN, Kazbanova AV, Kuznetsova LI, Solovyov LA (2012) Russ J Phys Chem A 86:1609–1612

    Article  Google Scholar 

  22. Song Y, Zhang J, Zhou X, Wang JA, Xu L, Yu G (2011) Catal Today 166:67–72

    Article  CAS  Google Scholar 

  23. Kuba S, Lukinskas P, Ahmad R, Jentoft FC, Grasselli RK, Gates BC, Knozinger H (2003) J Catal 219:376–388

    Article  CAS  Google Scholar 

  24. Occhiuzzi M, Cordischi D, Gazzoli D, Valigi M, Conceptiòn Heydorn P (2004) Appl Catal A 269:169–177

    Article  CAS  Google Scholar 

  25. Ebitani K, Konishi J, Hattori H (1991) J Catal 130:257–267

    Article  CAS  Google Scholar 

  26. Vaudagna CSR, Comelli RA, Fígoli NS (1997) Catal Lett 47:259–264

    Article  CAS  Google Scholar 

  27. Adeeva V, de Haan JW, Jänchen J, Lei GD, Schünemann G, van de Ven LJM, Sachtler WMH, van Santen RA (1995) J Catal 151:364–372

    Article  CAS  Google Scholar 

  28. Yang YC, Weng HS (2009) J Mol Catal A 304:65–70

    Article  CAS  Google Scholar 

  29. Manoli JM, Potvin C, Muhler M, Wild U, Resofszki G, Buchholz T, Paal Z (1998) J Catal 178:338–351

    Article  CAS  Google Scholar 

  30. Paal Z, Wild U, Muhler M, Manoli JM, Potvin C, Buchholz T, Sprenger S, Resofszki G (1999) Appl Catal A 188:257–266

    Article  CAS  Google Scholar 

  31. Grau JM, Yori JC, Parera JM (2001) Appl Catal A 213:247–257

    Article  CAS  Google Scholar 

  32. Arribas MA, Márquez F, Martínez A (2000) J Catal 190:309–319

    Article  CAS  Google Scholar 

  33. Comelli RA, Canavese SA, Querini CA, Figoli NS (1999) Appl Catal A 182:275–283

    Article  CAS  Google Scholar 

  34. Kuznetsova LN, Kazbanova AV, Kuznetsov PN, Tarasova LS (2015) Pet Chem 55(1):57–62

    Article  CAS  Google Scholar 

  35. Oka, Nishiguchi T, Kanai H, Utani K, Imamura S (2006) Appl Catal A 309:187–191

    Article  CAS  Google Scholar 

  36. Zhorov Yu M (1985) Thermodynamics of chemical processes. Petrochemical synthesis, petroleum refining, coal and natural gas. Khimiya, Moscow, p 464

  37. Vaudagna SR, Canavese SA, Comelli RA, Figoli NS (1998) Appl Catal A 168:93–111

    Article  CAS  Google Scholar 

  38. Paal Z, Schlogl R, Ertl G (1992) Catal Lett 12:331–344

    Article  CAS  Google Scholar 

  39. Sayari A, Dicko A (1994) J Catal 145:561–564

    Article  CAS  Google Scholar 

  40. Barbier J, Churin E, Parera JM, Riviere J (1985) React Kinet Catal Lett 29:323–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. L. Tarasova, Krasnoyarsk regional center for collective use, SB of RAS, for differential scanning calorimetry measurements and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.N., Obukhova, A.V., Kuznetsova, L.I. et al. Dynamics of the Activity and Physicochemical Characteristics of Pt/WO4 2−–ZrO2 Catalysts in the Hydroisomerization of Heptane and Heptane–Benzene Mixtures. Catal Lett 147, 773–784 (2017). https://doi.org/10.1007/s10562-017-1980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1980-1

Keywords

Navigation