Skip to main content
Log in

Oxidative Dehydrogenation of Cyclohexane and Cyclohexene over Y-doped CeO2 Nanorods

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The Y-doped and pure CeO2 nanorods were tested as dehydrogenation catalysts in the oxidative dehydrogenation of cyclohexene and cyclohexane. The dehydrogenation process involves a redox process and the increased amount of oxygen vacancies improved the catalytic activity. At a temperature as low as 150 °C, compared to the temperature of ~600 °C required for vanadium catalysts, the Y-doped CeO2 nanorods exhibits a cyclohexane conversion of ~20% with a product distribution for 38% cyclohexene, 11% benzene, 1% 1,3-cyclohexanediene and 50% combustion products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) Catal Today 50:353–367

    Article  CAS  Google Scholar 

  2. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Small 5:2848–2856

    Article  CAS  Google Scholar 

  3. Celardo I, Traversa E, Ghibelli L (2011) J Exp Ther Oncol 9:47–51

    CAS  Google Scholar 

  4. Zhang TS, Ma J, Huang HT, Hing P, Xia ZT, Chan SH, Kilner JA. (2003) Solid State Sci 5:1505–1511

    Article  CAS  Google Scholar 

  5. Kharton VV, Figueiredo F, Navarro L, Naumovich E, Kovalevsky A, Yaremchenko A, Viskup A, Carneiro a, Marques F, Frade J (2001) J Mater Sci 36:1105–1117

    Article  CAS  Google Scholar 

  6. Lawrence NJ, Brewer JR, Wang L, Wu TS, Wells-Kingsbury J, Ihrig MM, Wang G, Soo YL, Mei WN, Cheung CL (2011) Nano Lett 11:2666–2671

    Article  CAS  Google Scholar 

  7. Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) J Catal 229:206–212

    Article  CAS  Google Scholar 

  8. Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286–3287

    Article  CAS  Google Scholar 

  9. Lee Y, He G, Akey AJ, Si R, Flytzani-Stephanopoulos M, Herman IP (2011) J Am Chem Soc 133:12952–12955

    Article  CAS  Google Scholar 

  10. Abad A, Concepción P, Corma A, García H (2005) Angew Chemie Int Ed 44:4066–4069

    Article  CAS  Google Scholar 

  11. Murugan B, Ramaswamy AV (2007) J Am Chem Soc 129:3062–3063

    Article  CAS  Google Scholar 

  12. Xu J, Xue B, Liu YM, Li YX, Cao Y, Fan KN (2011) Appl Catal A Gen 405:142–148

    Article  CAS  Google Scholar 

  13. Si R, Raitano J, Yi N, Zhang L, Chan S-W, Flytzani-Stephanopoulos M (2012) Catal Today 180:68–80

    Article  CAS  Google Scholar 

  14. Liyanage AD, Perera SD, Tan K, Chabal Y, Balkus KJ (2014) ACS Catal 4:577–584

    Article  CAS  Google Scholar 

  15. Bhasin MM, McCain JH, Vora B V., Imai T, Pujadó PR (2001) Appl Catal A Gen 221:397–419

    Article  CAS  Google Scholar 

  16. Panizza M, Resini C, Busca G, Lopez EF, Escribano VS (2003) Catal Lett 89:199–205

    Article  CAS  Google Scholar 

  17. Feng H, Elam JW, Libera JA, Pellin MJ, Stair PC (2010) J Catal 269:421–431

    Article  CAS  Google Scholar 

  18. Kung MC, Kung HH (1991) J Catal 128:287–291

    Article  CAS  Google Scholar 

  19. Sato K, Aoki M, Noyori R (1998) Science 281:1646–1647

    Article  CAS  Google Scholar 

  20. Rey JFQ, Muccillo ENS (2004) J Eur Ceram Soc 24:1287–1290

    Article  CAS  Google Scholar 

  21. Sakar M, Rajkumar R, Tripathy S, Balakumar S (2012) Mater Res Bull 47:4340–4346

    Article  Google Scholar 

  22. Goto Y, Takahashi K, Omata T, Otsuka-Yao-Matsuo S (2009) J Phys Conf Ser 165:12041

    Article  Google Scholar 

  23. Zhang F, Chan S-W, Spanier JE, Apak E, Jin Q, Robinson RD, Herman IP (2002) Appl Phys Lett 80:127–129

    Article  CAS  Google Scholar 

  24. Trogadas P, Parrondo J, Ramani V (2012) ACS Appl Mater Interfaces 4:5098–5102

    Article  CAS  Google Scholar 

  25. Dutta P, Pal S, Seehra MS, Virginia W, Uni V, Virginia W, Shi Y, Eyring EM, Ernst RD (2006) Chem Mater 18:5144–5146

    Article  CAS  Google Scholar 

  26. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Solid State Ionics 154–155:461–466

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Robert A. Welch Foundation (AT-1153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Balkus Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gao, Y., Chabal, Y.J. et al. Oxidative Dehydrogenation of Cyclohexane and Cyclohexene over Y-doped CeO2 Nanorods. Catal Lett 147, 738–744 (2017). https://doi.org/10.1007/s10562-017-1974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-1974-z

Keyword

Navigation