Skip to main content
Log in

Bio-Catalytic Bis-Michael Reaction for Generating Cyclohexanones with a Quaternary Carbon Center Using Glucoamylase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Bio-catalytic bis-Michael reaction for the construction of quaternary carbon centers is reported. Glucoamylase from Aspergillus niger (AnGA) was used as a sustainable and eco-friendly catalyst. Various highly substituted trans-cyclohexanones with a quaternary carbon center were obtained with yields of up to 92%. As a novel case of enzyme promiscuity, this work provides a bio-catalytic alternative for construction of quaternary carbon centers.

Graphical Abstract

Glucoamylase from Aspergillus niger (AnGA) catalyzed the bis-Michael addition of (1E,4E)-1,5-diarylpenta-1,4-dien-3-ones with active methylene compounds to form various highly substituted trans-cyclohexanones with a quaternary carbon center

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Xue Y, Li L.-P, He Y.-H, Guan Z (2012) Sci Rep 2: 761

    Google Scholar 

  2. Wu L.-L, Xiang Y, Yang D.-C, Guan Z, He Y.-H (2016) Catal Sci Techno l 6: 3963–3970

    Article  CAS  Google Scholar 

  3. Markert M, Mulzer M, Schetter B, Mahrwald R (2007) J Am Chem Soc 129:7258–7259

    Article  CAS  Google Scholar 

  4. Humble MS, Berglund P (2011) Eur J Org Chem 2011:3391–3401

    Article  CAS  Google Scholar 

  5. Koeller KM, Wong CH (2001) Nature 409:232–240

    Article  CAS  Google Scholar 

  6. Klibanov AM (2001) Nature 409:241–246

    Article  CAS  Google Scholar 

  7. Griebenow K, Klibanov AM (1996) J Am Chem Soc 47:11695–11700

    Article  Google Scholar 

  8. Zaks A, Klibanov AM (1985) Proc Natl Acad Sci USA 82:3192–3196

    Article  CAS  Google Scholar 

  9. Klibanov AM (1986) Chemtech 16:354–359

    CAS  Google Scholar 

  10. Ward OP, Singh A (2000) Curr Opin Biotechnol 1:520–526

    Article  Google Scholar 

  11. Babtie A, Tokuriki N, Hollfelder F (2010) Curr Opin Chem Bio 14: 200–207

    Article  CAS  Google Scholar 

  12. Wu Q, Liu B.-K, Lin X.-F (2010) Curr Org Chem 14:1966–1968

    Article  CAS  Google Scholar 

  13. Bornscheuer UT, Kazlauskas RJ (2004) Angew Chem Int Ed 43:6032–6040

    Article  CAS  Google Scholar 

  14. Busto E, Gotor-Fernández V, Gotor V (2010) Chem Soc Rev 39:4504–4523

    Article  CAS  Google Scholar 

  15. Nobeli I, Favia AD, Thornton JM (2009) Nat Biotechnol 27:157–167

    Article  CAS  Google Scholar 

  16. Guan Z, Li L.-Y, He Y.-H (2015) RSC Adv 5: 16801–16814

    Article  CAS  Google Scholar 

  17. Wu W-B, Xu J-M, Wu Q, Lv D-S, Lin X-F (2006) Adv Synth Catal 348:487–492

    Article  CAS  Google Scholar 

  18. Li C, Feng X.-W, Wang N, Zhou Y-J, Yu X-Q (2008) Green Chem 10: 616–618

    Article  CAS  Google Scholar 

  19. Li H.-H, He Y.-H, Yuan Y, Guan Z (2011) Green Chem 13: 185–189

    Article  CAS  Google Scholar 

  20. Svedendahl M, Hult K, Berglund P (2005) J Am Chem Soc 127:17988–17989

    Article  CAS  Google Scholar 

  21. Cai J.-F, Guan Z, He Y.-H (2011) J Mol Catal B-Enzym 68: 240–244

    Article  CAS  Google Scholar 

  22. He Y-H, Hu W, Guan Z (2012) J Org Chem 77:200–207

    Article  CAS  Google Scholar 

  23. Akai S, Tanimoto K, Kita Y (2004) Angew Chem Int Ed 43:1407–1410

    Article  CAS  Google Scholar 

  24. Chai S-J, Lai Y-F, Xu J-C, Zheng H, Zhu Q, Zhang P-F (2011) Adv Synth Catal 353:371–375

    Article  CAS  Google Scholar 

  25. He T, Zeng Q.-Q, Yang D.-C, He Y.-H, Guan Z (2015) RSC Adv 5: 37843–37852

    Article  CAS  Google Scholar 

  26. Vongvilai P, Linder M, Sakulsombat M, Humble MS, Berglund P, Brinck T, RamstrÖm O (2011) Angew Chem Int Ed 50:6592–6595

    Article  CAS  Google Scholar 

  27. Lόpez-Iglesias M, Gotor-Fernández V (2015) Chem Rec 15:743–759

    Article  Google Scholar 

  28. Almasi D, Alonso DA, Balaguer AN, Nájera C (2009) Adv Synth Catal 351:1123–1131

    Article  CAS  Google Scholar 

  29. Wu C, Fu X, Li S (2011) Tetrahedron: Asymmetry 22:1063–1073

    Article  CAS  Google Scholar 

  30. Corey EJ, Guzman-Perez A (1998) Angew Chem Int Ed 37:388–401

    Article  Google Scholar 

  31. Fuji K (1993) Chem Rev 93:2037–2066

    Article  CAS  Google Scholar 

  32. Dounay AB, Hatanaka K, Kodanko JJ, Oestreich M, Overman LE, Pfeifer LA, Weiss MM (2003) J Am Chem Soc 125:6261–6271

    Article  CAS  Google Scholar 

  33. Zhang P, Le H, Kyne RE, Morken JP (2011) J Am Chem Soc 133:9716–9719

    Article  CAS  Google Scholar 

  34. Evans PA, Kennedy LJ (2000) Org Lett 2:2213–2215

    Article  CAS  Google Scholar 

  35. Peterson EA, Overman LE (2004) Proc Natl Acad Sci USA 101:11943–11948

    Article  CAS  Google Scholar 

  36. Wright PM, Myers AG (2011) Tetrahedron 67:9853–9869

    Article  CAS  Google Scholar 

  37. Yu Z, Liu X, Zhou L, Lin L, Feng X-M (2009) Angew Chem Int Ed 48:5195–5198

    Article  CAS  Google Scholar 

  38. Liu X, Lin L, Feng X-M (2009) Chem Commun 41:6145–6158

    Article  Google Scholar 

  39. Almasi D, Alonso DA, Najera C (2007) Tetrahedron 18:299–365

    Article  CAS  Google Scholar 

  40. Tsogoeva S B (2007) Eur J Org Chem 2007:1701–1716

    Article  Google Scholar 

  41. Alvarez SG, Hasegawa S, Hirano M, Komiya S (1998) Tetrahedron Lett 39:5209–5212

    Article  CAS  Google Scholar 

  42. Murahashi S-I, Naota T, Taki H, Mizuno M, Takaya H, Komiya S, Mizuho Y, Oyasato N, Hiraoka M, Hirano M, Fukuoka A (1995) J Am Chem Soc 117:12436–12451

    Article  CAS  Google Scholar 

  43. Ranu BC, Banerjee S (2005) Org Lett 7:3049–3052

    Article  CAS  Google Scholar 

  44. Ranu BC, Banerjee S, Jana R (2007) Tetrahedron 63:776–782

    Article  CAS  Google Scholar 

  45. Banerjee S, Santra S (2009) Tetrahedron Lett 50:2037–2040

    Article  CAS  Google Scholar 

  46. Li J-T, Xu W-Z, Chen G-F, Li T-S (2005) Ultrason Sonochem 12:473–476

    Article  Google Scholar 

  47. Li X, Wang B, Zhang J, Yan M (2011) Org Lett 13:374–377

    Article  CAS  Google Scholar 

  48. Wang L-L, Peng L, Bai J-F, Jia L-N, Luo X-Y, Huang Q-C, Xu X-Y, Wang L-X (2011) Chem Commun 47:5593–5595

    Article  CAS  Google Scholar 

  49. Fusco CD, Lattanzi A (2011) Eur J Org Chem 2011:3728–3731

    Article  Google Scholar 

  50. Gao N, Chen Y.-L, He Y.-H, Guan Z (2013) RSC Adv 3: 16850–16856

    Article  CAS  Google Scholar 

  51. Spiller HA (1998) Drug Saf 19:411–424

    Article  CAS  Google Scholar 

  52. Sels JP, Nauta JJ, Menheere PP, Wolffenbuttel BH, Nieuwenhuijzen Kruseman AC (1996) Br J Clin Pharmacol 42:503–506

    Article  CAS  Google Scholar 

  53. Christensen T, Stopper BB, Svensson B, Christensen U (1997) Eur J Biochem 250:638–645

    Article  CAS  Google Scholar 

  54. Sierks MR, Svensson B (1996) BioChemistry 35:1865–1871

    Article  CAS  Google Scholar 

  55. Armstrong A, Li W (2007) e-EROS Encycl Reag Org Synth doi:10.1002/9780470842898.rc024.pub2

    Google Scholar 

  56. Reddy NSK, Badam R, Sattibabu R, Molli M, Muthukumar VS, Sai SSS, Rao GN (2014) Chem Phys Lett 616:142–147

    Article  Google Scholar 

  57. Khalil F, Mohsen H, Meisam S (2010) Macromol Res 18:421–428

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21472152 and No. 21672174) and the Basic and Frontier Research Project of Chongqing (cstc2015jcyjBX0106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hong He or Zhi Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1833 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, R., He, YH. et al. Bio-Catalytic Bis-Michael Reaction for Generating Cyclohexanones with a Quaternary Carbon Center Using Glucoamylase. Catal Lett 147, 633–639 (2017). https://doi.org/10.1007/s10562-016-1964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1964-6

Keywords

Navigation